These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23661239)

  • 1. Mechanics of rolling of nanoribbon on tube and sphere.
    Yin Q; Shi X
    Nanoscale; 2013 Jun; 5(12):5450-5. PubMed ID: 23661239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Helical encapsulation of graphene nanoribbon into carbon nanotube.
    Jiang Y; Li H; Li Y; Yu H; Liew KM; He Y; Liu X
    ACS Nano; 2011 Mar; 5(3):2126-33. PubMed ID: 21309562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chiral graphene nanoribbon inside a carbon nanotube: ab initio study.
    Lebedeva IV; Popov AM; Knizhnik AA; Khlobystov AN; Potapkin BV
    Nanoscale; 2012 Aug; 4(15):4522-9. PubMed ID: 22696165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics Study of Graphene Nanoflake Shuttle Device on Graphene Nanoribbon with Carbon Nanotube Blocks.
    Kang JW; Kim KS; Kwon OK
    J Nanosci Nanotechnol; 2020 Sep; 20(9):5570-5574. PubMed ID: 32331136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Nanotube versus Graphene Nanoribbon: Impact of Nanofiller Geometry on Electromagnetic Interference Shielding of Polyvinylidene Fluoride Nanocomposites.
    Arjmand M; Sadeghi S; Otero Navas I; Zamani Keteklahijani Y; Dordanihaghighi S; Sundararaj U
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31226743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetics and electronic structure of encapsulated graphene nanoribbons in carbon nanotube.
    Mandal B; Sarkar S; Sarkar P
    J Phys Chem A; 2013 Sep; 117(36):8568-75. PubMed ID: 23675973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On Correlation Effect of the Van-der-Waals and Intramolecular Forces for the Nucleotide Chain - Metallic Nanoparticles - Carbon Nanotube Binding.
    Khusenov MA; Dushanov EB; Kholmurodov KhT; Zaki MM; Sweilam NH
    Open Biochem J; 2016; 10():17-26. PubMed ID: 27099634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical behaviors of carbon nanoscrolls.
    Wang T; Zhang C; Chen S
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1136-40. PubMed ID: 23646588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Van der Waals interaction-tuned heat transfer in nanostructures.
    Sun T; Wang J; Kang W
    Nanoscale; 2013 Jan; 5(1):128-33. PubMed ID: 23147396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation of square graphene-nanoflake oscillator on graphene nanoribbon.
    Kang JW; Lee KW
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9158-64. PubMed ID: 25971029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial Relative Position Influencing Self-Assembly of a Black Phosphorus Ribbon on a CNT.
    Cao J; Wang Y; Shi J; Chai J; Cai K
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30562978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lennard-Jones parameters for small diameter carbon nanotubes and water for molecular mechanics simulations from van der Waals density functional calculations.
    Kaukonen M; Gulans A; Havu P; Kauppinen E
    J Comput Chem; 2012 Mar; 33(6):652-8. PubMed ID: 22228486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Edge-Functionalized Graphene Nanoribbon Chemical Sensor: Comparison with Carbon Nanotube and Graphene.
    Cho KM; Cho SY; Chong S; Koh HJ; Kim DW; Kim J; Jung HT
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42905-42914. PubMed ID: 30421906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of graphene nanoribbon devices.
    Guo J
    Nanoscale; 2012 Sep; 4(18):5538-48. PubMed ID: 22875475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of van der Waals Interactions in QM/MM Simulations.
    Riccardi D; Li G; Cui Q
    J Phys Chem B; 2004 May; 108(20):6467-78. PubMed ID: 18950136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanics of the scrolling and folding of graphene.
    Li H; Li M; Kang Z
    Nanotechnology; 2018 Jun; 29(24):245604. PubMed ID: 29558361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of van der Waals interactions on the vibrational behavior of single-walled carbon nanotubes using the hammer impact test: a molecular dynamics study.
    Ghavaminezhad E; Mahnama M; Zolfaghari N
    Phys Chem Chem Phys; 2020 Jun; 22(22):12613-12623. PubMed ID: 32458878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Curved graphene nanoribbons: structure and dynamics of carbon nanobelts.
    Martins BV; Galvão DS
    Nanotechnology; 2010 Feb; 21(7):75710. PubMed ID: 20090201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure and dynamics of boron nitride nanoscrolls.
    Perim E; Galvao DS
    Nanotechnology; 2009 Aug; 20(33):335702. PubMed ID: 19636089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergent properties and trends of a new class of carbon nanocomposites: graphene nanoribbons encapsulated in a carbon nanotube.
    Kou L; Tang C; Wehling T; Frauenheim T; Chen C
    Nanoscale; 2013 Apr; 5(8):3306-14. PubMed ID: 23463363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.