These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Crude oil affecting the biomass of the marine copepod Calanus finmarchicus: Comparing a simple and complex population model. De Hoop L; Broch OJ; Hendriks AJ; De Laender F Mar Environ Res; 2016 Aug; 119():197-206. PubMed ID: 27326463 [TBL] [Abstract][Full Text] [Related]
25. Effects of petrogenic pollutants on North Atlantic and Arctic Calanus copepods: From molecular mechanisms to population impacts. Hansen BH; Tarrant AM; Lenz PH; Roncalli V; Almeda R; Broch OJ; Altin D; Tollefsen KE Aquat Toxicol; 2024 Feb; 267():106825. PubMed ID: 38176169 [TBL] [Abstract][Full Text] [Related]
26. Increased tolerance to oil exposure by the cosmopolitan marine copepod Acartia tonsa. Krause KE; Dinh KV; Nielsen TG Sci Total Environ; 2017 Dec; 607-608():87-94. PubMed ID: 28688259 [TBL] [Abstract][Full Text] [Related]
27. Stage-dependent and sex-dependent sensitivity to water-soluble fractions of fresh and weathered oil in the marine copepod Calanus finmarchicus. Jager T; Altin D; Miljeteig C; Hansen BH Environ Toxicol Chem; 2016 Mar; 35(3):728-35. PubMed ID: 26923858 [TBL] [Abstract][Full Text] [Related]
28. Active avoidance from a crude oil soluble fraction by an Andean paramo copepod. Araújo CV; Moreira-Santos M; Sousa JP; Ochoa-Herrera V; Encalada AC; Ribeiro R Ecotoxicology; 2014 Sep; 23(7):1254-9. PubMed ID: 24898412 [TBL] [Abstract][Full Text] [Related]
30. Influence of UVB radiation on the lethal and sublethal toxicity of dispersed crude oil to planktonic copepod nauplii. Almeda R; Harvey TE; Connelly TL; Baca S; Buskey EJ Chemosphere; 2016 Jun; 152():446-58. PubMed ID: 27003367 [TBL] [Abstract][Full Text] [Related]
31. Chemical composition and acute toxicity in the water after in situ burning--a laboratory experiment. Faksness LG; Hansen BH; Altin D; Brandvik PJ Mar Pollut Bull; 2012 Jan; 64(1):49-55. PubMed ID: 22112284 [TBL] [Abstract][Full Text] [Related]
32. Photoenhanced toxicity of weathered Alaska North Slope crude oil to the calanoid copepods Calanus marshallae and Metridia okhotensis. Duesterloh S; Short JW; Barron MG Environ Sci Technol; 2002 Sep; 36(18):3953-9. PubMed ID: 12269748 [TBL] [Abstract][Full Text] [Related]
33. Individual and molecular level effects of produced water contaminants on nauplii and adult females of Calanus finmarchicus. Jensen LK; Halvorsen E; Song Y; Hallanger IG; Hansen EL; Brooks SJ; Hansen BH; Tollefsen KE J Toxicol Environ Health A; 2016; 79(13-15):585-601. PubMed ID: 27484140 [TBL] [Abstract][Full Text] [Related]
34. Application of a biological multilevel response approach in the copepod Acartia tonsa for toxicity testing of three oil Water Accommodated Fractions. Hafez T; Bilbao D; Etxebarria N; Duran R; Ortiz-Zarragoitia M Mar Environ Res; 2021 Jul; 169():105378. PubMed ID: 34102532 [TBL] [Abstract][Full Text] [Related]
35. The acute toxicity of chemically and physically dispersed crude oil to key Arctic species under Arctic conditions during the open water season. Gardiner WW; Word JQ; Word JD; Perkins RA; McFarlin KM; Hester BW; Word LS; Ray CM Environ Toxicol Chem; 2013 Oct; 32(10):2284-300. PubMed ID: 23765555 [TBL] [Abstract][Full Text] [Related]
36. Application of chemical herders do not increase acute crude oil toxicity to cold-water marine species. Hansen BH; Nordtug T; Øverjordet IB; Altin D; Farkas J; Daling PS; Sørheim KR; Faksness LG Sci Total Environ; 2022 Jun; 823():153779. PubMed ID: 35150678 [TBL] [Abstract][Full Text] [Related]
37. Ingestion and sublethal effects of physically and chemically dispersed crude oil on marine planktonic copepods. Almeda R; Baca S; Hyatt C; Buskey EJ Ecotoxicology; 2014 Aug; 23(6):988-1003. PubMed ID: 24756329 [TBL] [Abstract][Full Text] [Related]
38. Simultaneous exposure to chronic hypoxia and dissolved polycyclic aromatic hydrocarbons results in reduced egg production and larval survival in the sheepshead minnow (Cyprinodon variegatus). Hedgpeth BM; Griffitt RJ Environ Toxicol Chem; 2016 Mar; 35(3):645-51. PubMed ID: 26274940 [TBL] [Abstract][Full Text] [Related]
39. Crude oil exposure results in oxidative stress-mediated dysfunctional development and reproduction in the copepod Tigriopus japonicus and modulates expression of cytochrome P450 (CYP) genes. Han J; Won EJ; Hwang DS; Shin KH; Lee YS; Leung KM; Lee SJ; Lee JS Aquat Toxicol; 2014 Jul; 152():308-17. PubMed ID: 24813263 [TBL] [Abstract][Full Text] [Related]
40. Changes in Chemical Composition and Copepod Toxicity during Petroleum Photo-oxidation. Katz SD; Chen H; Fields DM; Beirne EC; Keyes P; Drozd GT; Aeppli C Environ Sci Technol; 2022 May; 56(9):5552-5562. PubMed ID: 35435676 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]