BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 23661456)

  • 21. Hormonal regulation of beta2-adrenergic receptor level in prostate cancer.
    Ramberg H; Eide T; Krobert KA; Levy FO; Dizeyi N; Bjartell AS; Abrahamsson PA; Taskén KA
    Prostate; 2008 Jul; 68(10):1133-42. PubMed ID: 18454446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the RSL1-dependent conditional expression system in LNCaP prostate cancer cells and development of a single vector format.
    Lessard J; Aicha SB; Fournier A; Calvo E; Lavergne E; Pelletier M; Labrie C
    Prostate; 2007 Jun; 67(8):808-19. PubMed ID: 17373718
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular signatures of soy-derived phytochemicals in androgen-responsive prostate cancer cells: a comparison study using DNA microarray.
    Takahashi Y; Lavigne JA; Hursting SD; Chandramouli GV; Perkins SN; Kim YS; Wang TT
    Mol Carcinog; 2006 Dec; 45(12):943-56. PubMed ID: 16865672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly tumorigenic human androgen receptor-positive prostate cancer cells overexpress angiogenin.
    Kawada M; Inoue H; Arakawa M; Takamoto K; Masuda T; Ikeda D
    Cancer Sci; 2007 Mar; 98(3):350-6. PubMed ID: 17270024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gene expression in the LNCaP human prostate cancer progression model: progression associated expression in vitro corresponds to expression changes associated with prostate cancer progression in vivo.
    Chen Q; Watson JT; Marengo SR; Decker KS; Coleman I; Nelson PS; Sikes RA
    Cancer Lett; 2006 Dec; 244(2):274-88. PubMed ID: 16500022
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Androgen-dependent gene expression of prostate-specific antigen is enhanced synergistically by hypoxia in human prostate cancer cells.
    Horii K; Suzuki Y; Kondo Y; Akimoto M; Nishimura T; Yamabe Y; Sakaue M; Sano T; Kitagawa T; Himeno S; Imura N; Hara S
    Mol Cancer Res; 2007 Apr; 5(4):383-91. PubMed ID: 17426252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PI3 Kinase inhibition on TRAIL-induced apoptosis correlates with androgen-sensitivity and p21 expression in prostate cancer cells.
    Kadowaki Y; Chari NS; Teo AE; Hashi A; Spurgers KB; McDonnell TJ
    Apoptosis; 2011 Jun; 16(6):627-35. PubMed ID: 21437722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A human- and male-specific protocadherin that acts through the wnt signaling pathway to induce neuroendocrine transdifferentiation of prostate cancer cells.
    Yang X; Chen MW; Terry S; Vacherot F; Chopin DK; Bemis DL; Kitajewski J; Benson MC; Guo Y; Buttyan R
    Cancer Res; 2005 Jun; 65(12):5263-71. PubMed ID: 15958572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prostate-specific antigen (PSA) promoter-driven androgen-inducible expression of sodium iodide symporter in prostate cancer cell lines.
    Spitzweg C; Zhang S; Bergert ER; Castro MR; McIver B; Heufelder AE; Tindall DJ; Young CY; Morris JC
    Cancer Res; 1999 May; 59(9):2136-41. PubMed ID: 10232600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression profiling of the mouse prostate after castration and hormone replacement: implication of H-cadherin in prostate tumorigenesis.
    Wang XD; Wang BE; Soriano R; Zha J; Zhang Z; Modrusan Z; Cunha GR; Gao WQ
    Differentiation; 2007 Mar; 75(3):219-34. PubMed ID: 17288544
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of prostate-specific antigen (PSA) gene expression and release in LNCaP prostate cancer by antagonists of growth hormone-releasing hormone and vasoactive intestinal peptide.
    Rekasi Z; Schally AV; Plonowski A; Czompoly T; Csernus B; Varga JL
    Prostate; 2001 Aug; 48(3):188-99. PubMed ID: 11494334
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Autocrine regulation of prostate-specific antigen gene expression in a human prostatic cancer (LNCaP) subline.
    Hsieh JT; Wu HC; Gleave ME; von Eschenbach AC; Chung LW
    Cancer Res; 1993 Jun; 53(12):2852-7. PubMed ID: 7684949
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Key pathways involved in prostate cancer based on gene set enrichment analysis and meta analysis.
    Ning QY; Wu JZ; Zang N; Liang J; Hu YL; Mo ZN
    Genet Mol Res; 2011 Dec; 10(4):3856-87. PubMed ID: 22194210
    [TBL] [Abstract][Full Text] [Related]  

  • 34. HNF1B inhibits cell proliferation via repression of SMAD6 expression in prostate cancer.
    Lu W; Sun J; Zhou H; Wang F; Zhao C; Li K; Fan C; Ding G; Wang J
    J Cell Mol Med; 2020 Dec; 24(24):14539-14548. PubMed ID: 33174391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Downregulation of HNF1 homeobox B is associated with drug resistance in ovarian cancer.
    Li J; Zhang Y; Gao Y; Cui Y; Liu H; Li M; Tian Y
    Oncol Rep; 2014 Sep; 32(3):979-88. PubMed ID: 24968817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. HNF1B variants associate with promoter methylation and regulate gene networks activated in prostate and ovarian cancer.
    Ross-Adams H; Ball S; Lawrenson K; Halim S; Russell R; Wells C; Strand SH; Ørntoft TF; Larson M; Armasu S; Massie CE; Asim M; Mortensen MM; Borre M; Woodfine K; Warren AY; Lamb AD; Kay J; Whitaker H; Ramos-Montoya A; Murrell A; Sørensen KD; Fridley BL; Goode EL; Gayther SA; Masters J; Neal DE; Mills IG
    Oncotarget; 2016 Nov; 7(46):74734-74746. PubMed ID: 27732966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic and functional analyses implicate the NUDT11, HNF1B, and SLC22A3 genes in prostate cancer pathogenesis.
    Grisanzio C; Werner L; Takeda D; Awoyemi BC; Pomerantz MM; Yamada H; Sooriakumaran P; Robinson BD; Leung R; Schinzel AC; Mills I; Ross-Adams H; Neal DE; Kido M; Yamamoto T; Petrozziello G; Stack EC; Lis R; Kantoff PW; Loda M; Sartor O; Egawa S; Tewari AK; Hahn WC; Freedman ML
    Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11252-7. PubMed ID: 22730461
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alterations in LMTK2, MSMB and HNF1B gene expression are associated with the development of prostate cancer.
    Harries LW; Perry JR; McCullagh P; Crundwell M
    BMC Cancer; 2010 Jun; 10():315. PubMed ID: 20569440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A computational bioinformatics analysis of gene expression identifies candidate agents for prostate cancer.
    Wen DY; Geng J; Li W; Guo CC; Zheng JH
    Andrologia; 2014 Aug; 46(6):625-32. PubMed ID: 23790256
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HNF1B, EZH2 and ECI2 in prostate carcinoma. Molecular, immunohistochemical and clinico-pathological study.
    Dundr P; Bártů M; Hojný J; Michálková R; Hájková N; Stružinská I; Krkavcová E; Hadravský L; Kleissnerová L; Kopejsková J; Hiep BQ; Němejcová K; Jakša R; Čapoun O; Řezáč J; Jirsová K; Franková V
    Sci Rep; 2020 Sep; 10(1):14365. PubMed ID: 32873863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.