BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 23661779)

  • 1. Oxidative stress, photodamage and the role of screening pigments in insect eyes.
    Insausti TC; Le Gall M; Lazzari CR
    J Exp Biol; 2013 Sep; 216(Pt 17):3200-7. PubMed ID: 23661779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioral evidence of oxidative stress by hematophagy in the ocellar system of Rhodnius prolixus Stål, 1859 red-eyed mutants.
    Vija-Suarez CA; Ortiz MI; Molina J
    J Insect Physiol; 2017 Aug; 101():31-38. PubMed ID: 28636880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential control of light-dark adaptation in the ocelli and compound eyes of Triatoma infestans.
    Lazzari CR; Fischbein D; Insausti TC
    J Insect Physiol; 2011 Nov; 57(11):1545-52. PubMed ID: 21856308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The visual system of the Australian 'Redeye' cicada (Psaltoda moerens).
    Ribi WA; Zeil J
    Arthropod Struct Dev; 2015 Nov; 44(6 Pt A):574-86. PubMed ID: 26335848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eye pigments of the blood-sucking insect, Triatoma infestans Klug (Hemiptera, Reduviidae).
    Moraes AS; Pimentel ER; Rodrigues VL; Mello ML
    Braz J Biol; 2005 Aug; 65(3):477-81. PubMed ID: 16341426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How small can small be: the compound eye of the parasitoid wasp Trichogramma evanescens (Westwood, 1833) (Hymenoptera, Hexapoda), an insect of 0.3- to 0.4-mm total body size.
    Fischer S; Müller CH; Meyer-Rochow VB
    Vis Neurosci; 2011 Jul; 28(4):295-308. PubMed ID: 20939936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-induced and circadian changes in the compound eye of the haematophagous bug Triatoma infestans (Hemiptera: Reduviidae).
    Reisenman CE; Insausti TC; Lazzari CR
    J Exp Biol; 2002 Jan; 205(Pt 2):201-10. PubMed ID: 11821486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colour in the eyes of insects.
    Stavenga DG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Jun; 188(5):337-48. PubMed ID: 12073079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reniform reflecting superposition compound eyes of Nephrops norvegicus: optics, susceptibility to light-induced damage, electrophysiology and a ray tracing model.
    Gaten E; Moss S; Johnson ML
    Adv Mar Biol; 2013; 64():107-48. PubMed ID: 23668589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The spectral sensitivities of single receptor cells in the lateral, median, and ventral eyes of normal and white-eyed Limulus.
    Nolte J; Brown JE
    J Gen Physiol; 1970 Jun; 55(6):787-801. PubMed ID: 5424378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ocelli of Archaeognatha (Hexapoda): functional morphology, pigment migration and chemical nature of the reflective tapetum.
    Böhm A; Pass G
    J Exp Biol; 2016 Oct; 219(Pt 19):3039-3048. PubMed ID: 27471281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marine biology. Extraordinary eyes.
    Pennisi E
    Science; 2012 Mar; 335(6073):1163. PubMed ID: 22403364
    [No Abstract]   [Full Text] [Related]  

  • 13. Biological and biochemical characterization of a red-eye mutant in Nilaparvata lugens (Hemiptera: Delphacidae).
    Liu SH; Yao J; Yao HW; Jiang PL; Yang BJ; Tang J
    Insect Sci; 2014 Aug; 21(4):469-76. PubMed ID: 23955841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultraviolet and blue light induced damage to the Drosophila retina: microspectrophotometry and electrophysiology.
    Stark WS; Walker KD; Eidel JM
    Curr Eye Res; 1985 Oct; 4(10):1059-75. PubMed ID: 3933915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in electrophysiological properties of photoreceptors in Periplaneta americana associated with the loss of screening pigment.
    Saari P; Immonen EV; Kemppainen J; Heimonen K; Zhukovskaya M; Novikova E; French AS; Torkkeli PH; Liu H; Frolov RV
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Nov; 204(11):915-928. PubMed ID: 30238156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral sensitivity of the photonegative reaction of the blood-sucking bug Triatoma infestans (Heteroptera: Reduviidae).
    Reisenman CE; Lazzari C
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jan; 192(1):39-44. PubMed ID: 16133499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and putative function of dark- and light-adapted as well as UV-exposed eyes of the food store pest Psyllipsocus ramburi Sélys-longchamps (Insecta: Psocoptera: Psyllipsocidae).
    Meyer-Rochow VB; Mishra M
    J Insect Physiol; 2007 Feb; 53(2):157-69. PubMed ID: 17196612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructure and migration of screening pigments in the retina of Pieris rapae L. (Lepidoptera, Pieridae).
    Ribi WA
    Cell Tissue Res; 1978 Jul; 191(1):57-73. PubMed ID: 688357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The protective effect of ascorbic acid in retinal light damage of rats exposed to intermittent light.
    Organisciak DT; Jiang YL; Wang HM; Bicknell I
    Invest Ophthalmol Vis Sci; 1990 Jul; 31(7):1195-202. PubMed ID: 2365553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinal light damage reduces autofluorescent pigment deposition in the retinal pigment epithelium.
    Katz ML; Eldred GE
    Invest Ophthalmol Vis Sci; 1989 Jan; 30(1):37-43. PubMed ID: 2912913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.