These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 23662433)

  • 1. [The role of calmodulin in calcium-dependent signalling in excitable cells].
    Rebas E; Boczek T; Kowalski A; Kuśmirowska K; Lisek M; Zylińska L
    Postepy Biochem; 2012; 58(4):393-402. PubMed ID: 23662433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular Ca(2+) channels - a growing community.
    Taylor CW; Dale P
    Mol Cell Endocrinol; 2012 Apr; 353(1-2):21-8. PubMed ID: 21889573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dynamics of stochastic attrition viewed as an absorption time on a terminating Markov chain.
    DeRemigio H; Smith GD
    Cell Calcium; 2005 Aug; 38(2):73-86. PubMed ID: 16099503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanisms of calcium homeostasis and signalling in the lens.
    Rhodes JD; Sanderson J
    Exp Eye Res; 2009 Feb; 88(2):226-34. PubMed ID: 19061888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease.
    House SJ; Potier M; Bisaillon J; Singer HA; Trebak M
    Pflugers Arch; 2008 Aug; 456(5):769-85. PubMed ID: 18365243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of endoplasmic reticulum calcium stores is involved in neuronal death induced by glycolysis inhibition in cultured hippocampal neurons.
    Hernández-Fonseca K; Massieu L
    J Neurosci Res; 2005 Oct; 82(2):196-205. PubMed ID: 16175570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The versatility and universality of calcium signalling.
    Berridge MJ; Lipp P; Bootman MD
    Nat Rev Mol Cell Biol; 2000 Oct; 1(1):11-21. PubMed ID: 11413485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium signalling in T-lymphocytes.
    Robert V; Triffaux E; Savignac M; Pelletier L
    Biochimie; 2011 Dec; 93(12):2087-94. PubMed ID: 21712067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical characterization, distribution and phylogenetic analysis of Drosophila melanogaster ryanodine and IP3 receptors, and thapsigargin-sensitive Ca2+ ATPase.
    Vázquez-Martínez O; Cañedo-Merino R; Díaz-Muñoz M; Riesgo-Escovar JR
    J Cell Sci; 2003 Jun; 116(Pt 12):2483-94. PubMed ID: 12766186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+-induced Ca2+ release by activation of inositol 1,4,5-trisphosphate receptors in primary pancreatic beta-cells.
    Dyachok O; Tufveson G; Gylfe E
    Cell Calcium; 2004 Jul; 36(1):1-9. PubMed ID: 15126051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fast Ca2+-induced Ca2+-release mechanism in Dictyostelium discoideum.
    Malchow D; Lusche DF; De Lozanne A; Schlatterer C
    Cell Calcium; 2008 Jun; 43(6):521-30. PubMed ID: 17854889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium channels expressed in vascular smooth muscle.
    Marks AR
    Circulation; 1992 Dec; 86(6 Suppl):III61-7. PubMed ID: 1330365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mini-dystrophin expression down-regulates IP3-mediated calcium release events in resting dystrophin-deficient muscle cells.
    Balghi H; Sebille S; Mondin L; Cantereau A; Constantin B; Raymond G; Cognard C
    J Gen Physiol; 2006 Aug; 128(2):219-30. PubMed ID: 16847098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca(V)1.2 and Ca(V)1.3 L-type calcium channels regulate the resting membrane potential but not the expression of calcium transporters in differentiated PC12 cells.
    Lichvárová L; Lacinová Ľ
    Gen Physiol Biophys; 2015 Apr; 34(2):157-65. PubMed ID: 25675390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triggering of Ca2+ signals by NAADP-gated two-pore channels: a role for membrane contact sites?
    Patel S; Brailoiu E
    Biochem Soc Trans; 2012 Feb; 40(1):153-7. PubMed ID: 22260682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Themes and variations in ER/SR calcium release channels: structure and function.
    Stathopulos PB; Seo MD; Enomoto M; Amador FJ; Ishiyama N; Ikura M
    Physiology (Bethesda); 2012 Dec; 27(6):331-42. PubMed ID: 23223627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two different but converging messenger pathways to intracellular Ca(2+) release: the roles of nicotinic acid adenine dinucleotide phosphate, cyclic ADP-ribose and inositol trisphosphate.
    Cancela JM; Gerasimenko OV; Gerasimenko JV; Tepikin AV; Petersen OH
    EMBO J; 2000 Jun; 19(11):2549-57. PubMed ID: 10835353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuregulin beta1 enhances peak glutamate-induced intracellular calcium levels through endoplasmic reticulum calcium release in cultured hippocampal neurons.
    Schapansky J; Morissette M; Odero G; Albensi B; Glazner G
    Can J Physiol Pharmacol; 2009 Oct; 87(10):883-91. PubMed ID: 20052014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel mechanism underlying phytate-mediated biological action-phytate hydrolysates induce intracellular calcium signaling by a Gαq protein-coupled receptor and phospholipase C-dependent mechanism in colorectal cancer cells.
    Suzuki T; Nishioka T; Ishizuka S; Hara H
    Mol Nutr Food Res; 2010 Jul; 54(7):947-55. PubMed ID: 20146267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calmodulin and calcium-release channels.
    Kasri NN; Parys JB; Callewaert G; Missiaen L; De Smedt H
    Biol Res; 2004; 37(4):577-82. PubMed ID: 15709684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.