These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
520 related articles for article (PubMed ID: 23662795)
21. Gc-olfactometry with solid phase microextraction of aroma volatiles from heated and unheated orange juice. Rouseff R; Bazemore R; Goodner K; Naim M Adv Exp Med Biol; 2001; 488():101-12. PubMed ID: 11548149 [TBL] [Abstract][Full Text] [Related]
22. Odour-active compounds in papaya fruit cv. Red Maradol. Pino JA Food Chem; 2014 Mar; 146():120-6. PubMed ID: 24176322 [TBL] [Abstract][Full Text] [Related]
23. Analysis of Odorants in Marking Fluid of Siberian Tiger (Panthera tigris altaica) Using Simultaneous Sensory and Chemical Analysis with Headspace Solid-Phase Microextraction and Multidimensional Gas Chromatography-Mass Spectrometry-Olfactometry. Soso SB; Koziel JA Molecules; 2016 Jun; 21(7):. PubMed ID: 27347921 [TBL] [Abstract][Full Text] [Related]
24. Hot and cold water infusion aroma profiles of Hibiscus sabdariffa: fresh compared with dried. Ramírez-Rodrigues MM; Balaban MO; Marshall MR; Rouseff RL J Food Sci; 2011 Mar; 76(2):C212-7. PubMed ID: 21535737 [TBL] [Abstract][Full Text] [Related]
25. Analysis of volatile compounds of taperebá (Spondias mombin L.) and cajá (Spondias mombin L.) by simultaneous distillation and extraction (SDE) and solid phase microextraction (SPME). Ceva-Antunes PM; Bizzo HR; Alves SM; Antunes OA J Agric Food Chem; 2003 Feb; 51(5):1387-92. PubMed ID: 12590486 [TBL] [Abstract][Full Text] [Related]
26. Volatiles from Magnolia grandiflora flowers: comparative analysis by simultaneous distillation-extraction and solid phase microextraction. Báez D; Pino JA; Morales D Nat Prod Commun; 2012 Feb; 7(2):237-8. PubMed ID: 22474968 [TBL] [Abstract][Full Text] [Related]
27. Characterization of key aroma-active sulfur-containing compounds in Chinese Laobaigan Baijiu by gas chromatography-olfactometry and comprehensive two-dimensional gas chromatography coupled with sulfur chemiluminescence detection. Song X; Zhu L; Wang X; Zheng F; Zhao M; Liu Y; Li H; Zhang F; Zhang Y; Chen F Food Chem; 2019 Nov; 297():124959. PubMed ID: 31253273 [TBL] [Abstract][Full Text] [Related]
28. Analysis of the headspace volatiles of freshly brewed arabica coffee using solid-phase microextraction. Akiyama M; Murakami K; Ikeda M; Iwatsuki K; Wada A; Tokuno K; Onishi M; Iwabuchi H J Food Sci; 2007 Sep; 72(7):C388-96. PubMed ID: 17995637 [TBL] [Abstract][Full Text] [Related]
29. Comparison of headspace solid-phase microextraction, headspace single-drop microextraction and hydrodistillation for chemical screening of volatiles in Myrtus communis L. Moradi M; Kaykhaii M; Ghiasvand AR; Shadabi S; Salehinia A Phytochem Anal; 2012; 23(4):379-86. PubMed ID: 22069217 [TBL] [Abstract][Full Text] [Related]
30. Identification of volatile components in yak butter using SAFE, SDE and HS-SPME-GC/MS. Li N; Sun BG; Zheng FP; Chen HT; Liu SY; Gu C; Song ZY Nat Prod Res; 2012; 26(8):778-84. PubMed ID: 22017678 [TBL] [Abstract][Full Text] [Related]
31. Discrimination of Aroma Characteristics for Cubeb Berries by Sensomics Approach with Chemometrics. Cheng H; Chen J; Watkins PJ; Chen S; Wu D; Liu D; Ye X Molecules; 2018 Jul; 23(7):. PubMed ID: 29973507 [TBL] [Abstract][Full Text] [Related]
32. Identification of volatile compounds associated with the aroma of white strawberries (Fragaria chiloensis). Prat L; Espinoza MI; Agosin E; Silva H J Sci Food Agric; 2014 Mar; 94(4):752-9. PubMed ID: 24115051 [TBL] [Abstract][Full Text] [Related]
33. Headspace solid-phase microextraction gas chromatography-mass spectrometry determination of volatile compounds in different varieties of African star apple fruit (Chrysophillum albidum). Lasekan O; Khatib A; Juhari H; Patiram P; Lasekan S Food Chem; 2013 Dec; 141(3):2089-97. PubMed ID: 23870932 [TBL] [Abstract][Full Text] [Related]
34. Application of integrated comprehensive/multidimensional gas chromatography with mass spectrometry and olfactometry for aroma analysis in wine and coffee. Chin ST; Eyres GT; Marriott PJ Food Chem; 2015 Oct; 185():355-61. PubMed ID: 25952879 [TBL] [Abstract][Full Text] [Related]
35. Characterization of the key aroma compounds in mulberry fruits by application of gas chromatography-olfactometry (GC-O), odor activity value (OAV), gas chromatography-mass spectrometry (GC-MS) and flame photometric detection (FPD). Zhu J; Wang L; Xiao Z; Niu Y Food Chem; 2018 Apr; 245():775-785. PubMed ID: 29287440 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of volatiles from two subtropical strawberry cultivars using GC-olfactometry, GC-MS odor activity values, and sensory analysis. Du X; Plotto A; Baldwin E; Rouseff R J Agric Food Chem; 2011 Dec; 59(23):12569-77. PubMed ID: 22026593 [TBL] [Abstract][Full Text] [Related]
37. Identification and quantification of odours from oxobiodegradable polyethylene oxidised under a free radical flow by headspace solid-phase microextraction followed by gas chromatography-olfactometry-mass spectrometry. Wrona M; Vera P; Pezo D; Nerín C Talanta; 2017 Sep; 172():37-44. PubMed ID: 28602301 [TBL] [Abstract][Full Text] [Related]
38. Characterization of volatile profile from ten different varieties of Chinese jujubes by HS-SPME/GC-MS coupled with E-nose. Chen Q; Song J; Bi J; Meng X; Wu X Food Res Int; 2018 Mar; 105():605-615. PubMed ID: 29433254 [TBL] [Abstract][Full Text] [Related]
39. Sensory approach and chiral analysis for determination of odour active compounds from feijoa (Acca sellowiana). Sinuco León DC; Rubio Ortíz DK; Jaimes González DF Food Chem; 2020 Jul; 317():126383. PubMed ID: 32078992 [TBL] [Abstract][Full Text] [Related]
40. SPME-GC-MS & metal oxide E-Nose 18 sensors to validate the possible interactions between bio-active terpenes and egg yolk volatiles. Gouda M; Ma M; Sheng L; Xiang X Food Res Int; 2019 Nov; 125():108611. PubMed ID: 31554071 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]