These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 23663010)

  • 1. Exploring the structural features of Aspartate Trans Carbamoylase (TtATCase) from Thermus thermophilus HB8 through in silico approaches: a potential drug target for inborn error of pyrimidine metabolism.
    Kanagarajan S; Mutharasappan N; Dhamodharan P; Jeyaraman M; Ramadas K; Jeyaraman J
    J Biomol Struct Dyn; 2014 Apr; 32(4):591-601. PubMed ID: 23663010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of vital pathogenic target orotate phosphoribosyltransferases (OPRTase) from Thermus thermophilus HB8: Phylogenetic and molecular modeling approach.
    Surekha K; Prabhu D; Richard M; Nachiappan M; Biswal J; Jeyakanthan J
    Gene; 2016 Jun; 583(2):102-111. PubMed ID: 26861612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T-state inhibitors of E. coli aspartate transcarbamoylase that prevent the allosteric transition.
    Heng S; Stieglitz KA; Eldo J; Xia J; Cardia JP; Kantrowitz ER
    Biochemistry; 2006 Aug; 45(33):10062-71. PubMed ID: 16906764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative modeling of mammalian aspartate transcarbamylase.
    Scully JL; Evans DR
    Proteins; 1991; 9(3):191-206. PubMed ID: 2006137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure analysis of ornithine transcarbamylase from Thermus thermophilus --HB8 provides insights on the plasticity of the active site.
    Sundaresan R; Ebihara A; Kuramitsu S; Yokoyama S; Kumarevel T; Ponnuraj K
    Biochem Biophys Res Commun; 2015 Sep; 465(2):174-9. PubMed ID: 26210451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural modeling and electrostatic properties of aspartate transcarbamylase from Saccharomyces cerevisiae.
    Villoutreix BO; Spassov VZ; Atanasov BP; Hervé G; Ladjimi MM
    Proteins; 1994 Jul; 19(3):230-43. PubMed ID: 7937736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New regulatory mechanism-based inhibitors of aspartate transcarbamoylase for potential anticancer drug development.
    Lei Z; Wang B; Lu Z; Wang N; Tan H; Zheng J; Jia Z
    FEBS J; 2020 Aug; 287(16):3579-3599. PubMed ID: 31967710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP-induced structural change of dephosphocoenzyme A kinase from Thermus thermophilus HB8.
    Seto A; Murayama K; Toyama M; Ebihara A; Nakagawa N; Kuramitsu S; Shirouzu M; Yokoyama S
    Proteins; 2005 Jan; 58(1):235-42. PubMed ID: 15526298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of T state aspartate carbamoyltransferase of the hyperthermophilic archaeon Sulfolobus acidocaldarius.
    De Vos D; Van Petegem F; Remaut H; Legrain C; Glansdorff N; Van Beeumen JJ
    J Mol Biol; 2004 Jun; 339(4):887-900. PubMed ID: 15165857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of anti-filarial leads against aspartate semialdehyde dehydrogenase of Wolbachia endosymbiont of Brugia malayi: combined molecular docking and molecular dynamics approaches.
    Amala M; Rajamanikandan S; Prabhu D; Surekha K; Jeyakanthan J
    J Biomol Struct Dyn; 2019 Feb; 37(2):394-410. PubMed ID: 29334340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity.
    Kim SH; Hisano T; Iwasaki W; Ebihara A; Miki K
    Proteins; 2008 Feb; 70(3):718-30. PubMed ID: 17729270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of indole-3-glycerol phosphate synthase from Thermus thermophilus HB8: implications for thermal stability.
    Bagautdinov B; Yutani K
    Acta Crystallogr D Biol Crystallogr; 2011 Dec; 67(Pt 12):1054-64. PubMed ID: 22120743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of Thermus thermophilus HB8 aspartate aminotransferase and its complex with maleate.
    Nakai T; Okada K; Akutsu S; Miyahara I; Kawaguchi S; Kato R; Kuramitsu S; Hirotsu K
    Biochemistry; 1999 Feb; 38(8):2413-24. PubMed ID: 10029535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homology modeling and docking studies of FabH (β-ketoacyl-ACP synthase III) enzyme involved in type II fatty acid biosynthesis of Chlorella variabilis: a potential algal feedstock for biofuel production.
    Misra N; Patra MC; Panda PK; Sukla LB; Mishra BK
    J Biomol Struct Dyn; 2013 Mar; 31(3):241-57. PubMed ID: 22830394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational Plasticity of the Active Site Entrance in
    Lei Z; Wang N; Tan H; Zheng J; Jia Z
    Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31947715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of a novel zinc-binding ATP sulfurylase from Thermus thermophilus HB8.
    Taguchi Y; Sugishima M; Fukuyama K
    Biochemistry; 2004 Apr; 43(14):4111-8. PubMed ID: 15065853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape-based virtual screening, docking, and molecular dynamics simulations to identify Mtb-ASADH inhibitors.
    Kumar R; Garg P; Bharatam PV
    J Biomol Struct Dyn; 2015; 33(5):1082-93. PubMed ID: 24875451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intramolecular signal transmission in enterobacterial aspartate transcarbamylases II. Engineering co-operativity and allosteric regulation in the aspartate transcarbamylase of Erwinia herbicola.
    Cunin R; Rani CS; Van Vliet F; Wild JR; Wales M
    J Mol Biol; 1999 Dec; 294(5):1401-11. PubMed ID: 10600394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homology modeling and substrate binding study of Nudix hydrolase Ndx1 from Thermos thermophilus HB8.
    Zheng QC; Li ZS; Sun M; Zhang Y; Sun CC
    Biochem Biophys Res Commun; 2005 Aug; 333(3):881-7. PubMed ID: 15963459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Close proximity of phosphorylation sites to ligand in the phosphoproteome of the extreme thermophile Thermus thermophilus HB8.
    Takahata Y; Inoue M; Kim K; Iio Y; Miyamoto M; Masui R; Ishihama Y; Kuramitsu S
    Proteomics; 2012 May; 12(9):1414-30. PubMed ID: 22589190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.