BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 23663141)

  • 1. Glucose-oxidase label-based redox cycling for an incubation period-free electrochemical immunosensor.
    Singh A; Park S; Yang H
    Anal Chem; 2013 May; 85(10):4863-8. PubMed ID: 23663141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroreduction-based electrochemical-enzymatic redox cycling for the detection of cancer antigen 15-3 using graphene oxide-modified indium-tin oxide electrodes.
    Park S; Singh A; Kim S; Yang H
    Anal Chem; 2014 Feb; 86(3):1560-6. PubMed ID: 24428396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Outer-sphere to inner-sphere" redox cycling for ultrasensitive immunosensors.
    Akanda MR; Choe YL; Yang H
    Anal Chem; 2012 Jan; 84(2):1049-55. PubMed ID: 22208164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical immunosensor using p-aminophenol redox cycling by hydrazine combined with a low background current.
    Das J; Jo K; Lee JW; Yang H
    Anal Chem; 2007 Apr; 79(7):2790-6. PubMed ID: 17311407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of phosphatase- and redox cycling-based immunosensors and its application to ultrasensitive detection of troponin I.
    Akanda MR; Aziz MA; Jo K; Tamilavan V; Hyun MH; Kim S; Yang H
    Anal Chem; 2011 May; 83(10):3926-33. PubMed ID: 21486093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive detection of DNA in diluted serum using NaBH4 electrooxidation mediated by [Ru(NH3)6]3+ at indium-tin oxide electrodes.
    Das J; Lee JA; Yang H
    Langmuir; 2010 May; 26(9):6804-8. PubMed ID: 20085331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-interference washing-free electrochemical immunosensor using glycerol-3-phosphate dehydrogenase as an enzyme label.
    Dutta G; Park S; Singh A; Seo J; Kim S; Yang H
    Anal Chem; 2015 Apr; 87(7):3574-8. PubMed ID: 25751001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive electrochemical immunosensor via amide hydrolysis by DT-diaphorase combined with five redox-cycling reactions.
    Prayikaputri PU; Park S; Kim S; Yoon YH; Kim S; Yang H
    Biosens Bioelectron; 2023 Mar; 224():115058. PubMed ID: 36630744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct electrochemistry of glucose oxidase immobilized on NdPO4 nanoparticles/chitosan composite film on glassy carbon electrodes and its biosensing application.
    Sheng Q; Luo K; Li L; Zheng J
    Bioelectrochemistry; 2009 Feb; 74(2):246-53. PubMed ID: 18842465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferritin-Triggered Redox Cycling for Highly Sensitive Electrochemical Immunosensing of Protein.
    Akanda MR; Ju H
    Anal Chem; 2018 Jul; 90(13):8028-8034. PubMed ID: 29863845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioelectrocatalytic signaling from immunosensors with back-filling immobilization of glucose oxidase on biorecognition surfaces.
    Won BY; Choi HG; Kim KH; Byun SY; Kim HS; Yoon HC
    Biotechnol Bioeng; 2005 Mar; 89(7):815-21. PubMed ID: 15688358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Washing-free heterogeneous immunosensor using proximity-dependent electron mediation between an enzyme label and an electrode.
    Dutta G; Kim S; Park S; Yang H
    Anal Chem; 2014 May; 86(9):4589-95. PubMed ID: 24758236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bisulfite treatment and PCR-free global DNA methylation detection method using electrochemical enzymatic signal engagement.
    Bhattacharjee R; Moriam S; Nguyen NT; Shiddiky MJA
    Biosens Bioelectron; 2019 Feb; 126():102-107. PubMed ID: 30396016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive electrochemical immunoassay of carcinoembryonic antigen with signal dual-amplification using glucose oxidase and an artificial catalase.
    Tang J; Tang D; Li Q; Su B; Qiu B; Chen G
    Anal Chim Acta; 2011 Jul; 697(1-2):16-22. PubMed ID: 21641413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: direct electron transfer and electrocatalytic activity.
    Salimi A; Sharifi E; Noorbakhsh A; Soltanian S
    Biosens Bioelectron; 2007 Jun; 22(12):3146-53. PubMed ID: 17368016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection.
    Xu S; Liu Y; Wang T; Li J
    Anal Chem; 2011 May; 83(10):3817-23. PubMed ID: 21513282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic activity of oxidases hosted in lipidic cubic phases on electrodes.
    Nazaruk E; Bilewicz R
    Bioelectrochemistry; 2007 Sep; 71(1):8-14. PubMed ID: 17289444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive glucose biosensor based on one-pot biochemical preoxidation and electropolymerization of 2,5-dimercapto-1,3,4-thiadiazole in glucose oxidase-containing aqueous suspension.
    Fu Y; Zou C; Xie Q; Xu X; Chen C; Deng W; Yao S
    J Phys Chem B; 2009 Feb; 113(5):1332-40. PubMed ID: 19138137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced electrochemical activity of redox-labels in multi-layered protein films on indium tin oxide nanoparticle-based electrode.
    Yang XQ; Guo LH
    Anal Chim Acta; 2009 Jan; 632(1):15-20. PubMed ID: 19100877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-signal amplification strategy for ultrasensitive photoelectrochemical immunosensing of α-fetoprotein.
    Li YJ; Ma MJ; Zhu JJ
    Anal Chem; 2012 Dec; 84(23):10492-9. PubMed ID: 23140135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.