These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 23663141)
1. Glucose-oxidase label-based redox cycling for an incubation period-free electrochemical immunosensor. Singh A; Park S; Yang H Anal Chem; 2013 May; 85(10):4863-8. PubMed ID: 23663141 [TBL] [Abstract][Full Text] [Related]
2. Electroreduction-based electrochemical-enzymatic redox cycling for the detection of cancer antigen 15-3 using graphene oxide-modified indium-tin oxide electrodes. Park S; Singh A; Kim S; Yang H Anal Chem; 2014 Feb; 86(3):1560-6. PubMed ID: 24428396 [TBL] [Abstract][Full Text] [Related]
3. "Outer-sphere to inner-sphere" redox cycling for ultrasensitive immunosensors. Akanda MR; Choe YL; Yang H Anal Chem; 2012 Jan; 84(2):1049-55. PubMed ID: 22208164 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical immunosensor using p-aminophenol redox cycling by hydrazine combined with a low background current. Das J; Jo K; Lee JW; Yang H Anal Chem; 2007 Apr; 79(7):2790-6. PubMed ID: 17311407 [TBL] [Abstract][Full Text] [Related]
5. Optimization of phosphatase- and redox cycling-based immunosensors and its application to ultrasensitive detection of troponin I. Akanda MR; Aziz MA; Jo K; Tamilavan V; Hyun MH; Kim S; Yang H Anal Chem; 2011 May; 83(10):3926-33. PubMed ID: 21486093 [TBL] [Abstract][Full Text] [Related]
6. Ultrasensitive detection of DNA in diluted serum using NaBH4 electrooxidation mediated by [Ru(NH3)6]3+ at indium-tin oxide electrodes. Das J; Lee JA; Yang H Langmuir; 2010 May; 26(9):6804-8. PubMed ID: 20085331 [TBL] [Abstract][Full Text] [Related]
7. Low-interference washing-free electrochemical immunosensor using glycerol-3-phosphate dehydrogenase as an enzyme label. Dutta G; Park S; Singh A; Seo J; Kim S; Yang H Anal Chem; 2015 Apr; 87(7):3574-8. PubMed ID: 25751001 [TBL] [Abstract][Full Text] [Related]
8. Sensitive electrochemical immunosensor via amide hydrolysis by DT-diaphorase combined with five redox-cycling reactions. Prayikaputri PU; Park S; Kim S; Yoon YH; Kim S; Yang H Biosens Bioelectron; 2023 Mar; 224():115058. PubMed ID: 36630744 [TBL] [Abstract][Full Text] [Related]
9. Direct electrochemistry of glucose oxidase immobilized on NdPO4 nanoparticles/chitosan composite film on glassy carbon electrodes and its biosensing application. Sheng Q; Luo K; Li L; Zheng J Bioelectrochemistry; 2009 Feb; 74(2):246-53. PubMed ID: 18842465 [TBL] [Abstract][Full Text] [Related]
10. Ferritin-Triggered Redox Cycling for Highly Sensitive Electrochemical Immunosensing of Protein. Akanda MR; Ju H Anal Chem; 2018 Jul; 90(13):8028-8034. PubMed ID: 29863845 [TBL] [Abstract][Full Text] [Related]
11. Bioelectrocatalytic signaling from immunosensors with back-filling immobilization of glucose oxidase on biorecognition surfaces. Won BY; Choi HG; Kim KH; Byun SY; Kim HS; Yoon HC Biotechnol Bioeng; 2005 Mar; 89(7):815-21. PubMed ID: 15688358 [TBL] [Abstract][Full Text] [Related]
12. Washing-free heterogeneous immunosensor using proximity-dependent electron mediation between an enzyme label and an electrode. Dutta G; Kim S; Park S; Yang H Anal Chem; 2014 May; 86(9):4589-95. PubMed ID: 24758236 [TBL] [Abstract][Full Text] [Related]
13. A bisulfite treatment and PCR-free global DNA methylation detection method using electrochemical enzymatic signal engagement. Bhattacharjee R; Moriam S; Nguyen NT; Shiddiky MJA Biosens Bioelectron; 2019 Feb; 126():102-107. PubMed ID: 30396016 [TBL] [Abstract][Full Text] [Related]
14. Sensitive electrochemical immunoassay of carcinoembryonic antigen with signal dual-amplification using glucose oxidase and an artificial catalase. Tang J; Tang D; Li Q; Su B; Qiu B; Chen G Anal Chim Acta; 2011 Jul; 697(1-2):16-22. PubMed ID: 21641413 [TBL] [Abstract][Full Text] [Related]
15. Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: direct electron transfer and electrocatalytic activity. Salimi A; Sharifi E; Noorbakhsh A; Soltanian S Biosens Bioelectron; 2007 Jun; 22(12):3146-53. PubMed ID: 17368016 [TBL] [Abstract][Full Text] [Related]
16. Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Xu S; Liu Y; Wang T; Li J Anal Chem; 2011 May; 83(10):3817-23. PubMed ID: 21513282 [TBL] [Abstract][Full Text] [Related]
17. Catalytic activity of oxidases hosted in lipidic cubic phases on electrodes. Nazaruk E; Bilewicz R Bioelectrochemistry; 2007 Sep; 71(1):8-14. PubMed ID: 17289444 [TBL] [Abstract][Full Text] [Related]
18. Highly sensitive glucose biosensor based on one-pot biochemical preoxidation and electropolymerization of 2,5-dimercapto-1,3,4-thiadiazole in glucose oxidase-containing aqueous suspension. Fu Y; Zou C; Xie Q; Xu X; Chen C; Deng W; Yao S J Phys Chem B; 2009 Feb; 113(5):1332-40. PubMed ID: 19138137 [TBL] [Abstract][Full Text] [Related]
19. Enhanced electrochemical activity of redox-labels in multi-layered protein films on indium tin oxide nanoparticle-based electrode. Yang XQ; Guo LH Anal Chim Acta; 2009 Jan; 632(1):15-20. PubMed ID: 19100877 [TBL] [Abstract][Full Text] [Related]
20. Dual-signal amplification strategy for ultrasensitive photoelectrochemical immunosensing of α-fetoprotein. Li YJ; Ma MJ; Zhu JJ Anal Chem; 2012 Dec; 84(23):10492-9. PubMed ID: 23140135 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]