These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 23663289)

  • 1. Discovering putative prion sequences in complete proteomes using probabilistic representations of Q/N-rich domains.
    Espinosa Angarica V; Ventura S; Sancho J
    BMC Genomics; 2013 May; 14():316. PubMed ID: 23663289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PrionScan: an online database of predicted prion domains in complete proteomes.
    Espinosa Angarica V; Angulo A; Giner A; Losilla G; Ventura S; Sancho J
    BMC Genomics; 2014 Feb; 15():102. PubMed ID: 24498877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores.
    Zambrano R; Conchillo-Sole O; Iglesias V; Illa R; Rousseau F; Schymkowitz J; Sabate R; Daura X; Ventura S
    Nucleic Acids Res; 2015 Jul; 43(W1):W331-7. PubMed ID: 25977297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions.
    Michelitsch MD; Weissman JS
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11910-5. PubMed ID: 11050225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence and evolution of yeast prion and prion-like proteins.
    An L; Fitzpatrick D; Harrison PM
    BMC Evol Biol; 2016 Jan; 16():24. PubMed ID: 26809710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amyloid cores in prion domains: Key regulators for prion conformational conversion.
    Fernández MR; Batlle C; Gil-García M; Ventura S
    Prion; 2017 Jan; 11(1):31-39. PubMed ID: 28281928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compositional determinants of prion formation in yeast.
    Toombs JA; McCarty BR; Ross ED
    Mol Cell Biol; 2010 Jan; 30(1):319-32. PubMed ID: 19884345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the prion propensity of glutamine/asparagine-rich proteins.
    Paul KR; Ross ED
    Prion; 2015; 9(5):347-54. PubMed ID: 26555096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo design of synthetic prion domains.
    Toombs JA; Petri M; Paul KR; Kan GY; Ben-Hur A; Ross ED
    Proc Natl Acad Sci U S A; 2012 Apr; 109(17):6519-24. PubMed ID: 22474356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prion-like proteins: from computational approaches to proteome-wide analysis.
    Gil-Garcia M; Iglesias V; Pallarès I; Ventura S
    FEBS Open Bio; 2021 Sep; 11(9):2400-2417. PubMed ID: 34057308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovering Putative Prion-Like Proteins in
    Pallarès I; de Groot NS; Iglesias V; Sant'Anna R; Biosca A; Fernàndez-Busquets X; Ventura S
    Front Microbiol; 2018; 9():1737. PubMed ID: 30131778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the aggregation propensity of prion sequences.
    Espargaró A; Busquets MA; Estelrich J; Sabate R
    Virus Res; 2015 Sep; 207():127-35. PubMed ID: 25747492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method to assess compositional bias in biological sequences and its application to prion-like glutamine/asparagine-rich domains in eukaryotic proteomes.
    Harrison PM; Gerstein M
    Genome Biol; 2003; 4(6):R40. PubMed ID: 12801414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PrionHome: a database of prions and other sequences relevant to prion phenomena.
    Harbi D; Parthiban M; Gendoo DM; Ehsani S; Kumar M; Schmitt-Ulms G; Sowdhamini R; Harrison PM
    PLoS One; 2012; 7(2):e31785. PubMed ID: 22363733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Hunt for Ancient Prions: Archaeal Prion-Like Domains Form Amyloid-Based Epigenetic Elements.
    Zajkowski T; Lee MD; Mondal SS; Carbajal A; Dec R; Brennock PD; Piast RW; Snyder JE; Bense NB; Dzwolak W; Jarosz DF; Rothschild LJ
    Mol Biol Evol; 2021 May; 38(5):2088-2103. PubMed ID: 33480998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prion-like proteins and their computational identification in proteomes.
    Batlle C; Iglesias V; Navarro S; Ventura S
    Expert Rev Proteomics; 2017 Apr; 14(4):335-350. PubMed ID: 28271922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction networks of prion, prionogenic and prion-like proteins in budding yeast, and their role in gene regulation.
    Harbi D; Harrison PM
    PLoS One; 2014; 9(6):e100615. PubMed ID: 24972093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
    Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What makes a protein sequence a prion?
    Sabate R; Rousseau F; Schymkowitz J; Ventura S
    PLoS Comput Biol; 2015 Jan; 11(1):e1004013. PubMed ID: 25569335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Amyloid Cores in Prion Domains.
    Sant'Anna R; Fernández MR; Batlle C; Navarro S; de Groot NS; Serpell L; Ventura S
    Sci Rep; 2016 Sep; 6():34274. PubMed ID: 27686217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.