These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 23663289)

  • 21. Suppression of polyglutamine toxicity by the yeast Sup35 prion domain in Drosophila.
    Li LB; Xu K; Bonini NM
    J Biol Chem; 2007 Dec; 282(52):37694-701. PubMed ID: 17956866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of amino acid composition on yeast prion formation and prion domain interactions.
    Ross ED; Toombs JA
    Prion; 2010; 4(2):60-5. PubMed ID: 20495349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generating new prions by targeted mutation or segment duplication.
    Paul KR; Hendrich CG; Waechter A; Harman MR; Ross ED
    Proc Natl Acad Sci U S A; 2015 Jul; 112(28):8584-9. PubMed ID: 26100899
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A non-Q/N-rich prion domain of a foreign prion, [Het-s], can propagate as a prion in yeast.
    Taneja V; Maddelein ML; Talarek N; Saupe SJ; Liebman SW
    Mol Cell; 2007 Jul; 27(1):67-77. PubMed ID: 17612491
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Amino acid composition predicts prion activity.
    Afsar Minhas FUA; Ross ED; Ben-Hur A
    PLoS Comput Biol; 2017 Apr; 13(4):e1005465. PubMed ID: 28394888
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The complexity and implications of yeast prion domains.
    Du Z
    Prion; 2011; 5(4):311-6. PubMed ID: 22156731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles.
    Liu S; Hossinger A; Hofmann JP; Denner P; Vorberg IM
    mBio; 2016 Jul; 7(4):. PubMed ID: 27406566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of glutamine/asparagine content on aggregation and heterologous prion induction by yeast prion-like domains.
    Shattuck JE; Waechter AC; Ross ED
    Prion; 2017 Jul; 11(4):249-264. PubMed ID: 28665753
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amyloids of shuffled prion domains that form prions have a parallel in-register beta-sheet structure.
    Shewmaker F; Ross ED; Tycko R; Wickner RB
    Biochemistry; 2008 Apr; 47(13):4000-7. PubMed ID: 18324784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distinct amino acid compositional requirements for formation and maintenance of the [PSI⁺] prion in yeast.
    MacLea KS; Paul KR; Ben-Musa Z; Waechter A; Shattuck JE; Gruca M; Ross ED
    Mol Cell Biol; 2015 Mar; 35(5):899-911. PubMed ID: 25547291
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A bioinformatics method for identifying Q/N-rich prion-like domains in proteins.
    Ross ED; Maclea KS; Anderson C; Ben-Hur A
    Methods Mol Biol; 2013; 1017():219-28. PubMed ID: 23719919
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fibril-induced glutamine-/asparagine-rich prions recruit stress granule proteins in mammalian cells.
    Riemschoss K; Arndt V; Bolognesi B; von Eisenhart-Rothe P; Liu S; Buravlova O; Duernberger Y; Paulsen L; Hornberger A; Hossinger A; Lorenzo-Gotor N; Hogl S; Müller SA; Tartaglia G; Lichtenthaler SF; Vorberg IM
    Life Sci Alliance; 2019 Aug; 2(4):. PubMed ID: 31266883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prion Replication in the Mammalian Cytosol: Functional Regions within a Prion Domain Driving Induction, Propagation, and Inheritance.
    Duernberger Y; Liu S; Riemschoss K; Paulsen L; Bester R; Kuhn PH; Schölling M; Lichtenthaler SF; Vorberg I
    Mol Cell Biol; 2018 Aug; 38(15):. PubMed ID: 29784771
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Could yeast prion domains originate from polyQ/N tracts?
    Alexandrov AI; Ter-Avanesyan MD
    Prion; 2013; 7(3):209-14. PubMed ID: 23764835
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amyloids or prions? That is the question.
    Sabate R; Rousseau F; Schymkowitz J; Batlle C; Ventura S
    Prion; 2015; 9(3):200-6. PubMed ID: 26039159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution of budding yeast prion-determinant sequences across diverse fungi.
    Harrison LB; Yu Z; Stajich JE; Dietrich FS; Harrison PM
    J Mol Biol; 2007 Apr; 368(1):273-82. PubMed ID: 17320905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Opposing effects of glutamine and asparagine govern prion formation by intrinsically disordered proteins.
    Halfmann R; Alberti S; Krishnan R; Lyle N; O'Donnell CW; King OD; Berger B; Pappu RV; Lindquist S
    Mol Cell; 2011 Jul; 43(1):72-84. PubMed ID: 21726811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prion amyloid structure explains templating: how proteins can be genes.
    Wickner RB; Shewmaker F; Edskes H; Kryndushkin D; Nemecek J; McGlinchey R; Bateman D; Winchester CL
    FEMS Yeast Res; 2010 Dec; 10(8):980-91. PubMed ID: 20726897
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prion domains: sequences, structures and interactions.
    Ross ED; Minton A; Wickner RB
    Nat Cell Biol; 2005 Nov; 7(11):1039-44. PubMed ID: 16385730
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The story of stolen chaperones: how overexpression of Q/N proteins cures yeast prions.
    Derkatch IL; Liebman SW
    Prion; 2013; 7(4):294-300. PubMed ID: 23924684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.