These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 23663358)

  • 21. Corticosterone predicts nocturnal restlessness in a long-distance migrant.
    Eikenaar C; Klinner T; Stöwe M
    Horm Behav; 2014 Jul; 66(2):324-9. PubMed ID: 24956025
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Migrating birds rapidly increase constitutive immune function during stopover.
    Eikenaar C; Hessler S; Hegemann A
    R Soc Open Sci; 2020 Feb; 7(2):192031. PubMed ID: 32257353
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stop early to travel fast: modelling risk-averse scheduling among nocturnally migrating birds.
    McLaren JD; Shamoun-Baranes J; Bouten W
    J Theor Biol; 2013 Jan; 316():90-8. PubMed ID: 23026762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Songbirds initiate migratory flights synchronously relative to civil dusk.
    Cooper NW; Dossman BC; Berrigan LE; Brown JM; Brunner AR; Chmura HE; Cormier DA; Bégin-Marchand C; Rodewald AD; Taylor PD; Tonra CM; Tremblay JA; Marra PP
    Mov Ecol; 2023 May; 11(1):24. PubMed ID: 37122011
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immune function and blood parasite infections impact stopover ecology in passerine birds.
    Hegemann A; Alcalde Abril P; Muheim R; Sjöberg S; Alerstam T; Nilsson JÅ; Hasselquist D
    Oecologia; 2018 Dec; 188(4):1011-1024. PubMed ID: 30386941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Earlier and slower or later and faster: Spring migration pace linked to departure time in a Neotropical migrant songbird.
    González AM; Bayly NJ; Hobson KA
    J Anim Ecol; 2020 Dec; 89(12):2840-2851. PubMed ID: 32989739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Not just fuel: energy stores are correlated with immune function and oxidative damage in a long-distance migrant.
    Eikenaar C; Hegemann A; Packmor F; Kleudgen I; Isaksson C
    Curr Zool; 2020 Feb; 66(1):21-28. PubMed ID: 32467701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Migrating songbirds on stopover prepare for, and recover from, oxidative challenges posed by long-distance flight.
    Skrip MM; Bauchinger U; Goymann W; Fusani L; Cardinale M; Alan RR; McWilliams SR
    Ecol Evol; 2015 Aug; 5(15):3198-209. PubMed ID: 26355277
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fuel loads acquired at a stopover site influence the pace of intercontinental migration in a boreal songbird.
    Gómez C; Bayly NJ; Norris DR; Mackenzie SA; Rosenberg KV; Taylor PD; Hobson KA; Daniel Cadena C
    Sci Rep; 2017 Jun; 7(1):3405. PubMed ID: 28611372
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stopover durations of three warbler species along their autumn migration route.
    Schaub M; Jenni L
    Oecologia; 2001 Jul; 128(2):217-227. PubMed ID: 28547471
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flight by night or day? Optimal daily timing of bird migration.
    Alerstam T
    J Theor Biol; 2009 Jun; 258(4):530-6. PubMed ID: 19459237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Migratory stopover in the long-distance migrant silver-haired bat, Lasionycteris noctivagans.
    McGuire LP; Guglielmo CG; Mackenzie SA; Taylor PD
    J Anim Ecol; 2012 Mar; 81(2):377-85. PubMed ID: 21954938
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Endogenous rhythms of seasonal migratory body mass changes and nocturnal restlessness in different populations of Northern Wheatear Oenanthe oenanthe.
    Maggini I; Bairlein F
    J Biol Rhythms; 2010 Aug; 25(4):268-76. PubMed ID: 20679496
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-sensor geolocators unveil global and local movements in an Alpine-breeding long-distance migrant.
    Rime Y; Nussbaumer R; Briedis M; Sander MM; Chamberlain D; Amrhein V; Helm B; Liechti F; Meier CM
    Mov Ecol; 2023 Apr; 11(1):19. PubMed ID: 37020307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Constitutive immune function is not associated with fuel stores in spring migrating passerine birds.
    Ronanki S; Hegemann A; Eikenaar C
    Ecol Evol; 2024 Jun; 14(6):e11516. PubMed ID: 38932964
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wind-associated detours promote seasonal migratory connectivity in a flapping flying long-distance avian migrant.
    Norevik G; Åkesson S; Artois T; Beenaerts N; Conway G; Cresswell B; Evens R; Henderson I; Jiguet F; Hedenström A
    J Anim Ecol; 2020 Feb; 89(2):635-646. PubMed ID: 31581321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stopovers Serve Physiological Recovery in Migratory Songbirds.
    Eikenaar C; Ostolani A; Hessler S; Ye EY; Karwinkel T; Isaksson C
    Physiol Biochem Zool; 2023; 96(5):378-389. PubMed ID: 37713714
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Departure, routing and landing decisions of long-distance migratory songbirds in relation to weather.
    Rüppel G; Hüppop O; Lagerveld S; Schmaljohann H; Brust V
    R Soc Open Sci; 2023 Feb; 10(2):221420. PubMed ID: 36778957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stopover ecology of a migratory ungulate.
    Sawyer H; Kauffman MJ
    J Anim Ecol; 2011 Sep; 80(5):1078-87. PubMed ID: 21545586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cues, corticosterone and departure decisions in a partial migrant.
    Eikenaar C; Ballstaedt E; Hessler S; Klinner T; Müller F; Schmaljohann H
    Gen Comp Endocrinol; 2018 May; 261():59-66. PubMed ID: 29397064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.