These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 23663358)

  • 41. Migration routes and strategies in a highly aerial migrant, the common swift Apus apus, revealed by light-level geolocators.
    Åkesson S; Klaassen R; Holmgren J; Fox JW; Hedenström A
    PLoS One; 2012; 7(7):e41195. PubMed ID: 22815968
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optimal stopover decisions of migrating birds under variable stopover quality: model predictions and the field data.
    Chernetsov NS; Skutina EA; Bulyuk VN; Tsvey AL
    Zh Obshch Biol; 2004; 65(3):211-7. PubMed ID: 15329011
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anthropogenic food subsidies reshape the migratory behaviour of a long-distance migrant.
    Marcelino J; Franco AMA; Acácio M; Soriano-Redondo A; Moreira F; Catry I
    Sci Total Environ; 2023 Feb; 858(Pt 3):159992. PubMed ID: 36356748
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nocturnal migratory songbirds adjust their travelling direction aloft: evidence from a radiotelemetry and radar study.
    Sjöberg S; Nilsson C
    Biol Lett; 2015 Jun; 11(6):20150337. PubMed ID: 26085501
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Meteorological factors affecting refueling of European Robin (Erithacus rubecula) during migrations.
    Ktitorov P; Bulyuk V; Leoke D; Kulikova O
    Int J Biometeorol; 2021 Feb; 65(2):291-299. PubMed ID: 33068144
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Both short and long distance migrants use energy-minimizing migration strategies in North American herring gulls.
    Anderson CM; Gilchrist HG; Ronconi RA; Shlepr KR; Clark DE; Fifield DA; Robertson GJ; Mallory ML
    Mov Ecol; 2020; 8():26. PubMed ID: 32549986
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stopover refuelling, movement and departure decisions in the white-throated sparrow: The influence of intrinsic and extrinsic factors during spring migration.
    Beauchamp AT; Guglielmo CG; Morbey YE
    J Anim Ecol; 2020 Nov; 89(11):2553-2566. PubMed ID: 32770676
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fuel deposition of three passerine bird species along the migration route.
    Schaub M; Jenni L
    Oecologia; 2000 Feb; 122(3):306-317. PubMed ID: 28308281
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A mimicked bacterial infection prolongs stopover duration in songbirds-but more pronounced in short- than long-distance migrants.
    Hegemann A; Alcalde Abril P; Sjöberg S; Muheim R; Alerstam T; Nilsson JÅ; Hasselquist D
    J Anim Ecol; 2018 Nov; 87(6):1698-1708. PubMed ID: 30101481
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Adaptations to migration in birds: behavioural strategies, morphology and scaling effects.
    Hedenström A
    Philos Trans R Soc Lond B Biol Sci; 2008 Jan; 363(1490):287-99. PubMed ID: 17638691
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Body fat influences departure from stopover sites in migratory birds: evidence from whole-island telemetry.
    Goymann W; Spina F; Ferri A; Fusani L
    Biol Lett; 2010 Aug; 6(4):478-81. PubMed ID: 20164077
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Can differential fatty acid composition help migrating birds to limit oxidative lipid damage?
    Eikenaar C; Winslott E; Schmaljohann H; Wang HL; Isaksson C
    Physiol Behav; 2022 May; 249():113768. PubMed ID: 35247445
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ghrelin, corticosterone and the resumption of migration from stopover, an automated telemetry study.
    Eikenaar C; Hessler S; Ballstaedt E; Schmaljohann H; Kaiya H
    Physiol Behav; 2018 Oct; 194():450-455. PubMed ID: 29958878
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experimental ghrelin administration affects migratory behaviour in a songbird.
    Lupi S; Morbey YE; MacDougall-Shackleton SA; Kaiya H; Fusani L; Guglielmo CG
    Horm Behav; 2022 May; 141():105139. PubMed ID: 35299118
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Days to visit an offshore island: effect of weather conditions on arrival fuel load and potential flight range for common blackbirds Turdus merula migrating over the North Sea.
    Kelsey NA; Hüppop O; Bairlein F
    Mov Ecol; 2021 Oct; 9(1):53. PubMed ID: 34674773
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Magnetic cues and time of season affect fuel deposition in migratory thrush nightingales (Luscinia luscinia).
    Kullberg C; Lind J; Fransson T; Jakobsson S; Vallin A
    Proc Biol Sci; 2003 Feb; 270(1513):373-8. PubMed ID: 12639316
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Migrating curlews on schedule: departure and arrival patterns of a long-distance migrant depend on time and breeding location rather than on wind conditions.
    Schwemmer P; Mercker M; Vanselow KH; Bocher P; Garthe S
    Mov Ecol; 2021 Mar; 9(1):9. PubMed ID: 33731224
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of ketogenesis in the migratory fattening of the northern wheatear
    Frias-Soler RC; Kelsey NA; Pildaín LV; Wink M; Bairlein F
    Biol Lett; 2021 Jul; 17(7):20210195. PubMed ID: 34314642
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Feasibility of sun and magnetic compass mechanisms in avian long-distance migration.
    Muheim R; Schmaljohann H; Alerstam T
    Mov Ecol; 2018; 6():8. PubMed ID: 29992024
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Variation in songbird migratory behavior offers clues about adaptability to environmental change.
    Calvert AM; Mackenzie SA; Flemming JM; Taylor PD; Walde SJ
    Oecologia; 2012 Mar; 168(3):849-61. PubMed ID: 21927912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.