These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 23663419)
1. Soil metatranscriptomics for mining eukaryotic heavy metal resistance genes. Lehembre F; Doillon D; David E; Perrotto S; Baude J; Foulon J; Harfouche L; Vallon L; Poulain J; Da Silva C; Wincker P; Oger-Desfeux C; Richaud P; Colpaert JV; Chalot M; Fraissinet-Tachet L; Blaudez D; Marmeisse R Environ Microbiol; 2013 Oct; 15(10):2829-40. PubMed ID: 23663419 [TBL] [Abstract][Full Text] [Related]
2. Heavy metal hypertolerant eukaryotic aldehyde dehydrogenase isolated from metal contaminated soil by metatranscriptomics approach. Mukherjee A; Yadav R; Marmeisse R; Fraissinet-Tachet L; Reddy MS Biochimie; 2019 May; 160():183-192. PubMed ID: 30905733 [TBL] [Abstract][Full Text] [Related]
3. Metagenomics analysis reveals a new metallothionein family: Sequence and metal-binding features of new environmental cysteine-rich proteins. Ziller A; Yadav RK; Capdevila M; Reddy MS; Vallon L; Marmeisse R; Atrian S; Palacios Ò; Fraissinet-Tachet L J Inorg Biochem; 2017 Feb; 167():1-11. PubMed ID: 27886631 [TBL] [Abstract][Full Text] [Related]
4. Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine. Epelde L; Lanzén A; Blanco F; Urich T; Garbisu C FEMS Microbiol Ecol; 2015 Jan; 91(1):1-11. PubMed ID: 25764532 [TBL] [Abstract][Full Text] [Related]
5. Genomic analysis of Bacillus cereus NWUAB01 and its heavy metal removal from polluted soil. Ayangbenro AS; Babalola OO Sci Rep; 2020 Nov; 10(1):19660. PubMed ID: 33184305 [TBL] [Abstract][Full Text] [Related]
6. Metatranscriptomics of Soil Eukaryotic Communities. Yadav RK; Bragalini C; Fraissinet-Tachet L; Marmeisse R; Luis P Methods Mol Biol; 2016; 1399():273-87. PubMed ID: 26791509 [TBL] [Abstract][Full Text] [Related]
7. Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Yilmaz EI Res Microbiol; 2003; 154(6):409-15. PubMed ID: 12892847 [TBL] [Abstract][Full Text] [Related]
8. Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils. Damon C; Lehembre F; Oger-Desfeux C; Luis P; Ranger J; Fraissinet-Tachet L; Marmeisse R PLoS One; 2012; 7(1):e28967. PubMed ID: 22238585 [TBL] [Abstract][Full Text] [Related]
9. Heavy metals translocation and accumulation from the rhizosphere soils to the edible parts of the medicinal plant Fengdan (Paeonia ostii) grown on a metal mining area, China. Shen ZJ; Xu C; Chen YS; Zhang Z Ecotoxicol Environ Saf; 2017 Sep; 143():19-27. PubMed ID: 28494313 [TBL] [Abstract][Full Text] [Related]
10. Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Abou-Shanab RA; van Berkum P; Angle JS Chemosphere; 2007 Jun; 68(2):360-7. PubMed ID: 17276484 [TBL] [Abstract][Full Text] [Related]
11. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation. Martínez-Alcalá I; Walker DJ; Bernal MP Ecotoxicol Environ Saf; 2010 May; 73(4):595-602. PubMed ID: 20060590 [TBL] [Abstract][Full Text] [Related]
12. From industrial sites to environmental applications with Cupriavidus metallidurans. Diels L; Van Roy S; Taghavi S; Van Houdt R Antonie Van Leeuwenhoek; 2009 Aug; 96(2):247-58. PubMed ID: 19582590 [TBL] [Abstract][Full Text] [Related]
13. Rhizostabilization of metals in soils using Lupinus luteus inoculated with the metal resistant rhizobacterium Serratia sp. MSMC541. El Aafi N; Brhada F; Dary M; Maltouf AF; Pajuelo E Int J Phytoremediation; 2012 Mar; 14(3):261-74. PubMed ID: 22567710 [TBL] [Abstract][Full Text] [Related]
14. Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China. Liu G; Wang J; Zhang E; Hou J; Liu X Environ Sci Pollut Res Int; 2016 May; 23(9):8709-20. PubMed ID: 26801928 [TBL] [Abstract][Full Text] [Related]
15. Management with willow short rotation coppice increase the functional gene diversity and functional activity of a heavy metal polluted soil. Xue K; van Nostrand JD; Vangronsveld J; Witters N; Janssen JO; Kumpiene J; Siebielec G; Galazka R; Giagnoni L; Arenella M; Zhou JZ; Renella G Chemosphere; 2015 Nov; 138():469-77. PubMed ID: 26183942 [TBL] [Abstract][Full Text] [Related]
16. [Effect of heavy metals on the growth of soil streptomyces]. Valagurova OV; Kozyrits'ka VIe; Pindrus AA; Piliashenko-Novokhatnyĭ AI; Azimtseva OO Mikrobiol Z; 2001; 63(3):30-7. PubMed ID: 11785261 [TBL] [Abstract][Full Text] [Related]
17. Performance of rose scented geranium (Pelargonium graveolens) in heavy metal polluted soil vis-à-vis phytoaccumulation of metals. Chand S; Singh G; Patra DD Int J Phytoremediation; 2016 Aug; 18(8):754-60. PubMed ID: 26696243 [TBL] [Abstract][Full Text] [Related]
18. Soil eukaryotic functional diversity, a metatranscriptomic approach. Bailly J; Fraissinet-Tachet L; Verner MC; Debaud JC; Lemaire M; Wésolowski-Louvel M; Marmeisse R ISME J; 2007 Nov; 1(7):632-42. PubMed ID: 18043670 [TBL] [Abstract][Full Text] [Related]
19. Isolation and characterization of yeasts associated with plants growing in heavy-metal- and arsenic-contaminated soils. Ramos-Garza J; Bustamante-Brito R; Ángeles de Paz G; Medina-Canales MG; Vásquez-Murrieta MS; Wang ET; Rodríguez-Tovar AV Can J Microbiol; 2016 Apr; 62(4):307-19. PubMed ID: 26936448 [TBL] [Abstract][Full Text] [Related]
20. Identification and characterization of heavy metal-resistant unicellular alga isolated from soil and its potential for phytoremediation. Yoshida N; Ikeda R; Okuno T Bioresour Technol; 2006 Oct; 97(15):1843-9. PubMed ID: 16226026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]