These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 23663448)
1. Electron backscatter diffraction in conservation science: phase identification of pigments in paint layers. Gambirasi A; Peruzzo L; Bianchin S; Favaro M Microsc Microanal; 2013 Aug; 19(4):921-8. PubMed ID: 23663448 [TBL] [Abstract][Full Text] [Related]
2. The backscatter electron signal as an additional tool for phase segmentation in electron backscatter diffraction. Payton EJ; Nolze G Microsc Microanal; 2013 Aug; 19(4):929-41. PubMed ID: 23575349 [TBL] [Abstract][Full Text] [Related]
3. Non-destructive micro-analytical differentiation of copper pigments in paint layers of works of art using laboratory-based techniques. Svarcová S; Cermáková Z; Hradilová J; Bezdička P; Hradil D Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():514-25. PubMed ID: 24892529 [TBL] [Abstract][Full Text] [Related]
4. Raman identification of yellow synthetic organic pigments in modern and contemporary paintings: reference spectra and case studies. Ropret P; Centeno SA; Bukovec P Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):486-97. PubMed ID: 17590389 [TBL] [Abstract][Full Text] [Related]
5. Combined SERS and Raman analysis for the identification of red pigments in cross-sections from historic oil paintings. Frano KA; Mayhew HE; Svoboda SA; Wustholz KL Analyst; 2014 Dec; 139(24):6450-5. PubMed ID: 25340987 [TBL] [Abstract][Full Text] [Related]
6. Blue pigment colors from wall painting churches in danger (Portugal 15th to 18th century): identification, diagnosis, and color evaluation. Gil M; Carvalho ML; Longelin S; Ribeiro I; Valadas S; Mirão J; Candeias AE Appl Spectrosc; 2011 Jul; 65(7):782-9. PubMed ID: 21740640 [TBL] [Abstract][Full Text] [Related]
7. Detection of organic colorants in historical painting layers using UV laser ablation surface-enhanced Raman microspectroscopy. Cesaratto A; Leona M; Lombardi JR; Comelli D; Nevin A; Londero P Angew Chem Int Ed Engl; 2014 Dec; 53(52):14373-7. PubMed ID: 25353694 [TBL] [Abstract][Full Text] [Related]
8. Immunodetection of proteins in ancient paint media. Cartechini L; Vagnini M; Palmieri M; Pitzurra L; Mello T; Mazurek J; Chiari G Acc Chem Res; 2010 Jun; 43(6):867-76. PubMed ID: 20438070 [TBL] [Abstract][Full Text] [Related]
10. [Spectral analysis of green pigments of painting and colored drawing in northern Chinese ancient architectures]. Wang LQ; Yan J; Fan XL; Ma T Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Feb; 30(2):453-7. PubMed ID: 20384144 [TBL] [Abstract][Full Text] [Related]
11. Multivariate chemical mapping of pigments and binders in easel painting cross-sections by micro IR reflection spectroscopy. Rosi F; Federici A; Brunetti BG; Sgamellotti A; Clementi S; Miliani C Anal Bioanal Chem; 2011 Mar; 399(9):3133-45. PubMed ID: 20936268 [TBL] [Abstract][Full Text] [Related]
12. An analytical Raman spectroscopic study of an important english oil painting of the 18th Century. Edwards HG; Vandenabeele P; Jehlicka J; Benoy TJ Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():598-602. PubMed ID: 24095770 [TBL] [Abstract][Full Text] [Related]
13. A review of strain analysis using electron backscatter diffraction. Wright SI; Nowell MM; Field DP Microsc Microanal; 2011 Jun; 17(3):316-29. PubMed ID: 21418731 [TBL] [Abstract][Full Text] [Related]
14. ATR-FT-IR spectroscopy in the region of 550-230 cm(-1) for identification of inorganic pigments. Vahur S; Teearu A; Leito I Spectrochim Acta A Mol Biomol Spectrosc; 2010 Mar; 75(3):1061-72. PubMed ID: 20061180 [TBL] [Abstract][Full Text] [Related]
16. An open-source engine for the processing of electron backscatter patterns: EBSD-image. Pinard PT; Lagacé M; Hovington P; Thibault D; Gauvin R Microsc Microanal; 2011 Jun; 17(3):374-85. PubMed ID: 21554830 [TBL] [Abstract][Full Text] [Related]
17. Structural examination of easel paintings with optical coherence tomography. Targowski P; Iwanicka M; Tymińska-Widmer L; Sylwestrzak M; Kwiatkowska EA Acc Chem Res; 2010 Jun; 43(6):826-36. PubMed ID: 20043663 [TBL] [Abstract][Full Text] [Related]
18. Imaging secondary ion mass spectrometry of a paint cross section taken from an early Netherlandish painting by Rogier van der Weyden. Keune K; Boon JJ Anal Chem; 2004 Mar; 76(5):1374-85. PubMed ID: 14987095 [TBL] [Abstract][Full Text] [Related]
19. Analytical characterization of the palette and painting techniques of Jorge Afonso, the great 16th century Master of Lisbon painting workshop. Antunes V; Candeias A; Mirão J; Carvalho ML; Dias CB; Manhita A; Cardoso A; Francisco MJ; Lauw A; Manso M Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 193():264-275. PubMed ID: 29258021 [TBL] [Abstract][Full Text] [Related]
20. Combined use of synchrotron radiation based micro-X-ray fluorescence, micro-X-ray diffraction, micro-X-ray absorption near-edge, and micro-fourier transform infrared spectroscopies for revealing an alternative degradation pathway of the pigment cadmium yellow in a painting by Van Gogh. Van der Snickt G; Janssens K; Dik J; De Nolf W; Vanmeert F; Jaroszewicz J; Cotte M; Falkenberg G; Van der Loeff L Anal Chem; 2012 Dec; 84(23):10221-8. PubMed ID: 22931047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]