These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 23663672)
1. Direct measurement of ammonia in simulated human breath using an inkjet-printed polyaniline nanoparticle sensor. Hibbard T; Crowley K; Killard AJ Anal Chim Acta; 2013 May; 779():56-63. PubMed ID: 23663672 [TBL] [Abstract][Full Text] [Related]
2. Point of care monitoring of hemodialysis patients with a breath ammonia measurement device based on printed polyaniline nanoparticle sensors. Hibbard T; Crowley K; Kelly F; Ward F; Holian J; Watson A; Killard AJ Anal Chem; 2013 Dec; 85(24):12158-65. PubMed ID: 24299143 [TBL] [Abstract][Full Text] [Related]
3. An aqueous ammonia sensor based on an inkjet-printed polyaniline nanoparticle-modified electrode. Crowley K; O'Malley E; Morrin A; Smyth MR; Killard AJ Analyst; 2008 Mar; 133(3):391-9. PubMed ID: 18299755 [TBL] [Abstract][Full Text] [Related]
4. A novel electrochemical sensor based on ion imprinted polymer and gold nanomaterials for nitrite ion analysis in exhaled breath condensate. Diouf A; El Bari N; Bouchikhi B Talanta; 2020 Mar; 209():120577. PubMed ID: 31892035 [TBL] [Abstract][Full Text] [Related]
5. Chronocoulometric determination of urea in human serum using an inkjet printed biosensor. Suman ; O'Reilly E; Kelly M; Morrin A; Smyth MR; Killard AJ Anal Chim Acta; 2011 Jul; 697(1-2):98-102. PubMed ID: 21641424 [TBL] [Abstract][Full Text] [Related]
6. The application of conducting polymer nanoparticle electrodes to the sensing of ascorbic acid. Ambrosi A; Morrin A; Smyth MR; Killard AJ Anal Chim Acta; 2008 Feb; 609(1):37-43. PubMed ID: 18243871 [TBL] [Abstract][Full Text] [Related]
7. Development of low-cost hybrid multi-walled carbon nanotube-based ammonia gas-sensing strips with an integrated sensor read-out system for clinical breath analyzer applications. Abdulla S; Dhakshinamoorthy J; Mohan V; Veeran Ponnuvelu D; Krishnan Kallidaikuruchi V; Mathew Thalakkotil L; Pullithadathil B J Breath Res; 2019 Jul; 13(4):046005. PubMed ID: 31170701 [TBL] [Abstract][Full Text] [Related]
9. A highly sensitive microRNA biosensor based on hybridized microRNA-guided deposition of polyaniline. Deng H; Shen W; Ren Y; Gao Z Biosens Bioelectron; 2014 Oct; 60():195-200. PubMed ID: 24811193 [TBL] [Abstract][Full Text] [Related]
10. Development of a new generation of ammonia sensors on printed polymeric hotplates. Danesh E; Molina-Lopez F; Camara M; Bontempi A; Vásquez Quintero A; Teyssieux D; Thiery L; Briand D; de Rooij NF; Persaud KC Anal Chem; 2014 Sep; 86(18):8951-8. PubMed ID: 25144386 [TBL] [Abstract][Full Text] [Related]
11. Ultrasensitive sensor based on nano-Cu/polyaniline/nickel foam for monitoring H Liu A; Liang J; Shi R; Zhao Z; Tian Y J Breath Res; 2018 Mar; 12(3):036001. PubMed ID: 29317573 [TBL] [Abstract][Full Text] [Related]
12. Proton-Conductive Gas Sensor: a New Way to Realize Highly Selective Ammonia Detection for Analysis of Exhaled Human Breath. Zhao H; Liu L; Lin X; Dai J; Liu S; Fei T; Zhang T ACS Sens; 2020 Feb; 5(2):346-352. PubMed ID: 31793289 [TBL] [Abstract][Full Text] [Related]
13. Impedimetric sensor of bacterial toxins based on mixed (Concanavalin A)/polyaniline films. da Silva JS; Oliveira MD; de Melo CP; Andrade CA Colloids Surf B Biointerfaces; 2014 May; 117():549-54. PubMed ID: 24447687 [TBL] [Abstract][Full Text] [Related]
14. Direct analysis of human breath ammonia using corona discharge ion mobility spectrometry. Jazan E; Mirzaei H J Pharm Biomed Anal; 2014 Jan; 88():315-20. PubMed ID: 24120979 [TBL] [Abstract][Full Text] [Related]
15. Low Conductive Electrodeposited Poly(2,5-dimethoxyaniline) as a Key Material in a Double Lateral Heterojunction, for Sub-ppm Ammonia Sensing in Humid Atmosphere. Mateos M; Tchangaï MD; Meunier-Prest R; Heintz O; Herbst F; Suisse JM; Bouvet M ACS Sens; 2019 Mar; 4(3):740-747. PubMed ID: 30773874 [TBL] [Abstract][Full Text] [Related]
16. Non-invasive cortisol detection in saliva by using molecularly cortisol imprinted fullerene-acrylamide modified screen printed electrodes. Ertuğrul Uygun HD; Uygun ZO; Canbay E; Gi Rgi N Sağın F; Sezer E Talanta; 2020 Jan; 206():120225. PubMed ID: 31514839 [TBL] [Abstract][Full Text] [Related]
17. Measurement of ammonia in human breath with a liquid-film conductivity sensor. Toda K; Li J; Dasgupta PK Anal Chem; 2006 Oct; 78(20):7284-91. PubMed ID: 17037934 [TBL] [Abstract][Full Text] [Related]
18. [Detection of disease markers in the breath using optoelectronic methods]. Stacewicz T; Targowski T; Bielecki Z; Buszewski B; Ligor T; Wojtas J; Garlińska M Pol Merkur Lekarski; 2015 Sep; 39(231):134-41. PubMed ID: 26449573 [TBL] [Abstract][Full Text] [Related]
19. The development of a 'labeless' immunosensor for the detection of Listeria monocytogenes cell surface protein, Internalin B. Tully E; Higson SP; O'Kennedy R Biosens Bioelectron; 2008 Jan; 23(6):906-12. PubMed ID: 17988853 [TBL] [Abstract][Full Text] [Related]
20. An electrochemical sensor device for measuring blood ammonia at the point of care. Brannelly NT; Killard AJ Talanta; 2017 May; 167():296-301. PubMed ID: 28340723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]