BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

614 related articles for article (PubMed ID: 23663782)

  • 1. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4.
    Csibi A; Fendt SM; Li C; Poulogiannis G; Choo AY; Chapski DJ; Jeong SM; Dempsey JM; Parkhitko A; Morrison T; Henske EP; Haigis MC; Cantley LC; Stephanopoulos G; Yu J; Blenis J
    Cell; 2013 May; 153(4):840-54. PubMed ID: 23663782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. mTORC1 regulates glutamine metabolism.
    Cancer Discov; 2013 Jul; 3(7):OF25. PubMed ID: 23847369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SIRT4 protein suppresses tumor formation in genetic models of Myc-induced B cell lymphoma.
    Jeong SM; Lee A; Lee J; Haigis MC
    J Biol Chem; 2014 Feb; 289(7):4135-44. PubMed ID: 24368766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anabolic SIRT4 Exerts Retrograde Control over TORC1 Signaling by Glutamine Sparing in the Mitochondria.
    Shaw E; Talwadekar M; Rashida Z; Mohan N; Acharya A; Khatri S; Laxman S; Kolthur-Seetharam U
    Mol Cell Biol; 2020 Jan; 40(2):. PubMed ID: 31685549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sirtuin 4 Depletion Promotes Hepatocellular Carcinoma Tumorigenesis Through Regulating Adenosine-Monophosphate-Activated Protein Kinase Alpha/Mammalian Target of Rapamycin Axis in Mice.
    Wang YS; Du L; Liang X; Meng P; Bi L; Wang YL; Wang C; Tang B
    Hepatology; 2019 Apr; 69(4):1614-1631. PubMed ID: 30552782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation.
    Csibi A; Lee G; Yoon SO; Tong H; Ilter D; Elia I; Fendt SM; Roberts TM; Blenis J
    Curr Biol; 2014 Oct; 24(19):2274-80. PubMed ID: 25220053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21.
    Cornu M; Oppliger W; Albert V; Robitaille AM; Trapani F; Quagliata L; Fuhrer T; Sauer U; Terracciano L; Hall MN
    Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11592-9. PubMed ID: 25082895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic lethality of combined glutaminase and Hsp90 inhibition in mTORC1-driven tumor cells.
    Li J; Csibi A; Yang S; Hoffman GR; Li C; Zhang E; Yu JJ; Blenis J
    Proc Natl Acad Sci U S A; 2015 Jan; 112(1):E21-9. PubMed ID: 25524627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CtBP maintains cancer cell growth and metabolic homeostasis via regulating SIRT4.
    Wang L; Zhou H; Wang Y; Cui G; Di LJ
    Cell Death Dis; 2015 Jan; 6(1):e1620. PubMed ID: 25633289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex.
    Kim SG; Hoffman GR; Poulogiannis G; Buel GR; Jang YJ; Lee KW; Kim BY; Erikson RL; Cantley LC; Choo AY; Blenis J
    Mol Cell; 2013 Jan; 49(1):172-85. PubMed ID: 23142078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism.
    Jeong SM; Xiao C; Finley LW; Lahusen T; Souza AL; Pierce K; Li YH; Wang X; Laurent G; German NJ; Xu X; Li C; Wang RH; Lee J; Csibi A; Cerione R; Blenis J; Clish CB; Kimmelman A; Deng CX; Haigis MC
    Cancer Cell; 2013 Apr; 23(4):450-63. PubMed ID: 23562301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A ternary complex model of Sirtuin4-NAD
    Kato Y; Kihara H; Fukui K; Kojima M
    Comput Biol Chem; 2018 Jun; 74():94-104. PubMed ID: 29571013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-leucine stimulates glutamate dehydrogenase activity and glutamate synthesis by regulating mTORC1/SIRT4 pathway in pig liver.
    Wang T; Yao W; He Q; Shao Y; Zheng R; Huang F
    Anim Nutr; 2018 Sep; 4(3):329-337. PubMed ID: 30175263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The PIK3CA-E545K-SIRT4 signaling axis reduces radiosensitivity by promoting glutamine metabolism in cervical cancer.
    Jiang W; Ouyang X; Ji Z; Shi W; Wu Y; Yao Q; Wang Y; Yang W; Xiang L; Yang H
    Cancer Lett; 2023 Mar; 556():216064. PubMed ID: 36646410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting glutamine metabolism in hepatic stellate cells alleviates liver fibrosis.
    Yin X; Peng J; Gu L; Liu Y; Li X; Wu J; Xu B; Zhuge Y; Zhang F
    Cell Death Dis; 2022 Nov; 13(11):955. PubMed ID: 36376267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. cAMP inhibits mammalian target of rapamycin complex-1 and -2 (mTORC1 and 2) by promoting complex dissociation and inhibiting mTOR kinase activity.
    Xie J; Ponuwei GA; Moore CE; Willars GB; Tee AR; Herbert TP
    Cell Signal; 2011 Dec; 23(12):1927-35. PubMed ID: 21763421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SIRT4 functions as a tumor suppressor during prostate cancer by inducing apoptosis and inhibiting glutamine metabolism.
    Cai G; Ge Z; Xu Y; Cai L; Sun P; Huang G
    Sci Rep; 2022 Jul; 12(1):12208. PubMed ID: 35842463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical role of arachidonic acid-activated mTOR signaling in breast carcinogenesis and angiogenesis.
    Wen ZH; Su YC; Lai PL; Zhang Y; Xu YF; Zhao A; Yao GY; Jia CH; Lin J; Xu S; Wang L; Wang XK; Liu AL; Jiang Y; Dai YF; Bai XC
    Oncogene; 2013 Jan; 32(2):160-70. PubMed ID: 22349822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical and therapeutic significance of sirtuin-4 expression in colorectal cancer.
    Huang G; Cheng J; Yu F; Liu X; Yuan C; Liu C; Chen X; Peng Z
    Oncol Rep; 2016 May; 35(5):2801-10. PubMed ID: 26986234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mammalian target of rapamycin complex 1 (mTORC1) enhances bortezomib-induced death in tuberous sclerosis complex (TSC)-null cells by a c-MYC-dependent induction of the unfolded protein response.
    Babcock JT; Nguyen HB; He Y; Hendricks JW; Wek RC; Quilliam LA
    J Biol Chem; 2013 May; 288(22):15687-98. PubMed ID: 23612979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.