These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 23664244)

  • 21. Heat strain in chemical protective ensembles: Effects of fabric thermal properties.
    Xu X; Rioux TP; Pomerantz N; Tew S; Blanchard LA
    J Therm Biol; 2019 Dec; 86():102435. PubMed ID: 31789231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal perception of ventilation changes in full-face motorcycle helmets: subject and manikin study.
    Bogerd CP; Rossi RM; Brühwiler PA
    Ann Occup Hyg; 2011 Mar; 55(2):192-201. PubMed ID: 20959389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of fabric thickness and material on apparent 'wet' conductive thermal resistance of knitted fabric 'skin' on sweating manikins.
    Wang F; Lai D; Shi W; Fu M
    J Therm Biol; 2017 Dec; 70(Pt A):69-76. PubMed ID: 29074028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of two sweating simulation methods on clothing evaporative resistance in a so-called isothermal condition.
    Lu Y; Wang F; Peng H
    Int J Biometeorol; 2016 Jul; 60(7):1041-9. PubMed ID: 26542017
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficiency of liquid cooling garments: prediction and manikin measurement.
    Xu X; Endrusick T; Laprise B; Santee W; Kolka M
    Aviat Space Environ Med; 2006 Jun; 77(6):644-8. PubMed ID: 16780244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurements of clothing evaporative resistance using a sweating thermal manikin: an overview.
    Wang F
    Ind Health; 2017 Dec; 55(6):473-484. PubMed ID: 28566566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Garment size effect of thermal protective clothing on global and local evaporative cooling of walking manikin in a hot environment.
    Guan M; Li J
    Int J Biometeorol; 2020 Mar; 64(3):485-499. PubMed ID: 32016640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of an electrically heated vest (EHV) using a thermal manikin in cold environments.
    Wang F; Lee H
    Ann Occup Hyg; 2010 Jan; 54(1):117-24. PubMed ID: 19901001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A modelling framework for local thermal comfort assessment related to bicycle helmet use.
    Bröde P; Aerts JM; De Bruyne G; Mayor TS; Annaheim S; Fiala D; Kuklane K
    J Therm Biol; 2023 Feb; 112():103457. PubMed ID: 36796903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The impact absorption characteristics of cricket batting helmets.
    Stretch RA
    J Sports Sci; 2000 Dec; 18(12):959-64. PubMed ID: 11138985
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of temperature difference between manikin and wet fabric skin surfaces on clothing evaporative resistance: how much error is there?
    Wang F; Kuklane K; Gao C; Holmér I
    Int J Biometeorol; 2012 Jan; 56(1):177-82. PubMed ID: 21318453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heat and water vapour transfer of protective clothing systems in a cold environment, measured with a newly developed sweating thermal manikin.
    Fukazawa T; Lee G; Matsuoka T; Kano K; Tochihara Y
    Eur J Appl Physiol; 2004 Sep; 92(6):645-8. PubMed ID: 15221398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin.
    Havenith G; Bröde P; den Hartog E; Kuklane K; Holmer I; Rossi RM; Richards M; Farnworth B; Wang X
    J Appl Physiol (1985); 2013 Mar; 114(6):778-85. PubMed ID: 23329814
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Localised boundary air layer and clothing evaporative resistances for individual body segments.
    Wang F; del Ferraro S; Lin LY; Sotto Mayor T; Molinaro V; Ribeiro M; Gao C; Kuklane K; Holmér I
    Ergonomics; 2012; 55(7):799-812. PubMed ID: 22455389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The relationship between air layers and evaporative resistance of male Chinese ethnic clothing.
    Wang F; Peng H; Shi W
    Appl Ergon; 2016 Sep; 56():194-202. PubMed ID: 27184328
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of clothing thermal insulation and moisture vapour resistance of the clothed body walking in wind.
    Qian X; Fan J
    Ann Occup Hyg; 2006 Nov; 50(8):833-42. PubMed ID: 16857703
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Apparent latent heat of evaporation from clothing: attenuation and "heat pipe" effects.
    Havenith G; Richards MG; Wang X; Bröde P; Candas V; den Hartog E; Holmér I; Kuklane K; Meinander H; Nocker W
    J Appl Physiol (1985); 2008 Jan; 104(1):142-9. PubMed ID: 17947501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A potential wearable solution for preventing heat strain in workplaces: The cooling effect and the total evaporative resistance of a ventilation jacket.
    Del Ferraro S; Falcone T; Morabito M; Messeri A; Bonafede M; Marinaccio A; Gao C; Molinaro V
    Environ Res; 2022 Sep; 212(Pt D):113475. PubMed ID: 35588774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relationship between clothing ventilation and thermal insulation.
    Bouskill LM; Havenith G; Kuklane K; Parsons KC; Withey WR
    AIHA J (Fairfax, Va); 2002; 63(3):262-8. PubMed ID: 12173174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of fabric skins for the simulation of sweating on thermal manikins.
    Koelblen B; Psikuta A; Bogdan A; Annaheim S; Rossi RM
    Int J Biometeorol; 2017 Sep; 61(9):1519-1529. PubMed ID: 28303342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.