These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23664313)

  • 1. An experimental and theoretical analysis of unconfined compression of corneal stroma.
    Hatami-Marbini H; Etebu E
    J Biomech; 2013 Jun; 46(10):1752-8. PubMed ID: 23664313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rate dependent biomechanical properties of corneal stroma in unconfined compression.
    Hatami-Marbini H; Etebu E
    Biorheology; 2013; 50(3-4):133-47. PubMed ID: 23863279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydration dependent biomechanical properties of the corneal stroma.
    Hatami-Marbini H; Etebu E
    Exp Eye Res; 2013 Nov; 116():47-54. PubMed ID: 23891861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new method to determine rate-dependent material parameters of corneal extracellular matrix.
    Hatami-Marbini H; Etebu E
    Ann Biomed Eng; 2013 Nov; 41(11):2399-408. PubMed ID: 23872935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelastic shear properties of the corneal stroma.
    Hatami-Marbini H
    J Biomech; 2014 Feb; 47(3):723-8. PubMed ID: 24368145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Biphasic Transversely Isotropic Poroviscoelastic Model for the Unconfined Compression of Hydrated Soft Tissue.
    Hatami-Marbini H; Maulik R
    J Biomech Eng; 2016 Mar; 138(3):4032059. PubMed ID: 26593630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient viscous response of the human cornea probed with the Surface Force Apparatus.
    Zappone B; Patil NJ; Lombardo M; Lombardo G
    PLoS One; 2018; 13(5):e0197779. PubMed ID: 29799859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depth-Dependent Out-of-Plane Young's Modulus of the Human Cornea.
    Ramirez-Garcia MA; Sloan SR; Nidenberg B; Khalifa YM; Buckley MR
    Curr Eye Res; 2018 May; 43(5):595-604. PubMed ID: 29283675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical properties of the porcine growth plate and its three zones from unconfined compression tests.
    Sergerie K; Lacoursière MO; Lévesque M; Villemure I
    J Biomech; 2009 Mar; 42(4):510-6. PubMed ID: 19185303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of experimental protocols on the mechanical properties of the intervertebral disc in unconfined compression.
    Recuerda M; Coté SP; Villemure I; Périé D
    J Biomech Eng; 2011 Jul; 133(7):071006. PubMed ID: 21823745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the ex vivo biomechanical properties of porcine cornea with inflation test for corneal xenotransplantation.
    Bao F; Jiang L; Wang X; Zhang D; Wang Q; Zeng Y
    J Med Eng Technol; 2012 Jan; 36(1):17-21. PubMed ID: 22085017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties of the porcine growth plate vary with developmental stage.
    Wosu R; Sergerie K; Lévesque M; Villemure I
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):303-12. PubMed ID: 21559968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of viscoelasticity of collagen fibers in articular cartilage: theory and numerical formulation.
    Li LP; Herzog W
    Biorheology; 2004; 41(3-4):181-94. PubMed ID: 15299251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanics of the anterior human corneal tissue investigated with atomic force microscopy.
    Lombardo M; Lombardo G; Carbone G; De Santo MP; Barberi R; Serrao S
    Invest Ophthalmol Vis Sci; 2012 Feb; 53(2):1050-7. PubMed ID: 22266511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental study on the mechanical strain of corneal collagen.
    Avetisov SE; Bubnova IA; Novikov IA; Antonov AA; Siplivyi VI
    J Biomech; 2013 Jun; 46(10):1648-54. PubMed ID: 23680349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications.
    Karimi A; Navidbakhsh M
    Biomed Tech (Berl); 2014 Dec; 59(6):479-86. PubMed ID: 24988278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of cell and collagen concentration on the cell-matrix mechanical relationship in a corneal stroma wound healing model.
    Ahearne M; Wilson SL; Liu KK; Rauz S; El Haj AJ; Yang Y
    Exp Eye Res; 2010 Nov; 91(5):584-91. PubMed ID: 20678499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nonlinear anisotropic viscoelastic model for the tensile behavior of the corneal stroma.
    Nguyen TD; Jones RE; Boyce BL
    J Biomech Eng; 2008 Aug; 130(4):041020. PubMed ID: 18601462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confined and unconfined stress relaxation of cartilage: appropriateness of a transversely isotropic analysis.
    Bursać PM; Obitz TW; Eisenberg SR; Stamenović D
    J Biomech; 1999 Oct; 32(10):1125-30. PubMed ID: 10476852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress relaxation of swine growth plate in semi-confined compression: depth dependent tissue deformational behavior versus extracellular matrix composition and collagen fiber organization.
    Amini S; Mortazavi F; Sun J; Levesque M; Hoemann CD; Villemure I
    Biomech Model Mechanobiol; 2013 Jan; 12(1):67-78. PubMed ID: 22446833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.