BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23664450)

  • 1. Global localization of 3D anatomical structures by pre-filtered Hough forests and discrete optimization.
    Donner R; Menze BH; Bischof H; Langs G
    Med Image Anal; 2013 Dec; 17(8):1304-14. PubMed ID: 23664450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic X-ray landmark detection and shape segmentation via data-driven joint estimation of image displacements.
    Chen C; Xie W; Franke J; Grutzner PA; Nolte LP; Zheng G
    Med Image Anal; 2014 Apr; 18(3):487-99. PubMed ID: 24561486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model-based, semi-global segmentation approach for automatic 3-D point landmark localization in neuroimages.
    Liu J; Gao W; Huang S; Nowinski WL
    IEEE Trans Med Imaging; 2008 Aug; 27(8):1034-44. PubMed ID: 18672421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust anatomical landmark detection with application to MR brain image registration.
    Han D; Gao Y; Wu G; Yap PT; Shen D
    Comput Med Imaging Graph; 2015 Dec; 46 Pt 3(0 3):277-90. PubMed ID: 26433614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomical landmark detection using nearest neighbor matching and submodular optimization.
    Liu D; Zhou SK
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):393-401. PubMed ID: 23286155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Landmark constellation models for medical image content identification and localization.
    Hansis E; Lorenz C
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1285-95. PubMed ID: 26662202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards automatic bone age estimation from MRI: localization of 3D anatomical landmarks.
    Ebner T; Stern D; Donner R; Bischof H; Urschler M
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):421-8. PubMed ID: 25485407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Personalization of pictorial structures for anatomical landmark localization.
    Potesil V; Kadir T; Platsch G; Brady SM
    Inf Process Med Imaging; 2011; 22():333-45. PubMed ID: 21761668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic detection of over 100 anatomical landmarks in medical CT images: A framework with independent detectors and combinatorial optimization.
    Hanaoka S; Shimizu A; Nemoto M; Nomura Y; Miki S; Yoshikawa T; Hayashi N; Ohtomo K; Masutani Y
    Med Image Anal; 2017 Jan; 35():192-214. PubMed ID: 27428630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regression forests for efficient anatomy detection and localization in computed tomography scans.
    Criminisi A; Robertson D; Konukoglu E; Shotton J; Pathak S; White S; Siddiqui K
    Med Image Anal; 2013 Dec; 17(8):1293-303. PubMed ID: 23410511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating geometric configuration and appearance information into a unified framework for anatomical landmark localization.
    Urschler M; Ebner T; Štern D
    Med Image Anal; 2018 Jan; 43():23-36. PubMed ID: 28963961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A combinatorial method for 3D landmark-based morphometry: application to the study of coronal craniosynostosis.
    Gioan E; Sol K; Subsol G
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):533-41. PubMed ID: 23286172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust anatomical landmark detection for MR brain image registration.
    Han D; Gao Y; Wu G; Yap PT; Shen D
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):186-93. PubMed ID: 25333117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of anatomical point landmarks in 3D medical images by fitting 3D parametric intensity models.
    Wörz S; Rohr K
    Inf Process Med Imaging; 2003 Jul; 18():76-88. PubMed ID: 15344448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locally-constrained boundary regression for segmentation of prostate and rectum in the planning CT images.
    Shao Y; Gao Y; Wang Q; Yang X; Shen D
    Med Image Anal; 2015 Dec; 26(1):345-56. PubMed ID: 26439938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic Craniomaxillofacial Landmark Digitization via Segmentation-Guided Partially-Joint Regression Forest Model and Multiscale Statistical Features.
    Zhang J; Gao Y; Wang L; Tang Z; Xia JJ; Shen D
    IEEE Trans Biomed Eng; 2016 Sep; 63(9):1820-1829. PubMed ID: 26625402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone tumor segmentation on bone scans using context information and random forests.
    Chu G; Lo P; Ramakrishna B; Kim H; Morris D; Goldin J; Brown M
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):601-8. PubMed ID: 25333168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning new parts for landmark localization in whole-body CT scans.
    Potesil V; Kadir T; Brady M
    IEEE Trans Med Imaging; 2014 Apr; 33(4):836-48. PubMed ID: 24710153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic categorization of anatomical landmark-local appearances based on diffeomorphic demons and spectral clustering for constructing detector ensembles.
    Hanaoka S; Masutani Y; Nemoto M; Nomura Y; Yoshikawa T; Hayashi N; Ohtomo K
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):106-13. PubMed ID: 23286038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmentation and landmark identification in infrared images of the human body.
    Herry CL; Frize M; Goubran RA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():957-60. PubMed ID: 17946429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.