BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23664636)

  • 1. Chemical dispersion of oil with mineral fines in a low temperature environment.
    Wang W; Zheng Y; Lee K
    Mar Pollut Bull; 2013 Jul; 72(1):205-12. PubMed ID: 23664636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of OMA formation and the effect of minerals.
    Zhang H; Khatibi M; Zheng Y; Lee K; Li Z; Mullin JV
    Mar Pollut Bull; 2010 Sep; 60(9):1433-41. PubMed ID: 20646720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale cold water dispersant effectiveness experiments with Alaskan crude oils and Corexit 9500 and 9527 dispersants.
    Belore RC; Trudel K; Mullin JV; Guarino A
    Mar Pollut Bull; 2009 Jan; 58(1):118-28. PubMed ID: 19007943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oil viscosity limitation on dispersibility of crude oil under simulated at-sea conditions in a large wave tank.
    Trudel K; Belore RC; Mullin JV; Guarino A
    Mar Pollut Bull; 2010 Sep; 60(9):1606-14. PubMed ID: 20723943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining the dispersibility of South Louisiana crude oil by eight oil dispersant products listed on the NCP Product Schedule.
    Venosa AD; Holder EL
    Mar Pollut Bull; 2013 Jan; 66(1-2):73-7. PubMed ID: 23211999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the ability of calcite, bentonite and barite to enhance oil dispersion under arctic conditions.
    Jézéquel R; Receveur J; Nedwed T; Le Floch S
    Mar Pollut Bull; 2018 Feb; 127():626-636. PubMed ID: 29475706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of temperature and wave conditions on chemical dispersion efficacy of heavy fuel oil in an experimental flow-through wave tank.
    Li Z; Lee K; King T; Boufadel MC; Venosa AD
    Mar Pollut Bull; 2010 Sep; 60(9):1550-9. PubMed ID: 20483435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating crude oil chemical dispersion efficacy in a flow-through wave tank under regular non-breaking wave and breaking wave conditions.
    Li Z; Lee K; King T; Boufadel MC; Venosa AD
    Mar Pollut Bull; 2009 May; 58(5):735-44. PubMed ID: 19157465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attachment of a hydrophobically modified biopolymer at the oil-water interface in the treatment of oil spills.
    Venkataraman P; Tang J; Frenkel E; McPherson GL; He J; Raghavan SR; Kolesnichenko V; Bose A; John VT
    ACS Appl Mater Interfaces; 2013 May; 5(9):3572-80. PubMed ID: 23527784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation and sedimentation of oil-mineral aggregates in the presence of chemical dispersant.
    Li W; Qi Z; Xiong D; Wu Y; Wang W; Qi Y; Guo J
    Environ Sci Process Impacts; 2023 Dec; 25(12):1937-1944. PubMed ID: 37786335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale dispersant leaching and effectiveness experiments with oils on calm water.
    Lewis A; Trudel BK; Belore RC; Mullin JV
    Mar Pollut Bull; 2010 Feb; 60(2):244-54. PubMed ID: 19853872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partitioning of fresh crude oil between floating, dispersed and sediment phases: Effect of exposure order to dispersant and granular materials.
    Boglaienko D; Tansel B
    J Environ Manage; 2016 Jun; 175():40-5. PubMed ID: 27019358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of chemical dispersants and mineral fines on crude oil dispersion in a wave tank under breaking waves.
    Li Z; Kepkay P; Lee K; King T; Boufadel MC; Venosa AD
    Mar Pollut Bull; 2007 Jul; 54(7):983-93. PubMed ID: 17433372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laboratory investigation of oil-suspended particulate matter aggregation under different mixing conditions.
    Sun J; Khelifa A; Zhao C; Zhao D; Wang Z
    Sci Total Environ; 2014 Mar; 473-474():742-9. PubMed ID: 24462999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of crude oil from highly contaminated natural surfaces with corexit dispersants.
    Tansel B; Lee M
    J Environ Manage; 2019 Oct; 247():363-370. PubMed ID: 31252235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the kinetics of oil-suspended particulate matter aggregation.
    Sun J; Zhao D; Zhao C; Liu F; Zheng X
    Mar Pollut Bull; 2013 Nov; 76(1-2):250-7. PubMed ID: 24060471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Settling of dilbit-derived oil-mineral aggregates (OMAs) & transport parameters for oil spill modelling.
    O'Laughlin CM; Law BA; Zions VS; King TL; Robinson B; Wu Y
    Mar Pollut Bull; 2017 Nov; 124(1):292-302. PubMed ID: 28751027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coated kapok fiber for removal of spilled oil.
    Wang J; Zheng Y; Wang A
    Mar Pollut Bull; 2013 Apr; 69(1-2):91-6. PubMed ID: 23419751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial film formation: influence on oil spreading rates in lab basin tests and dispersant effectiveness testing in a wave tank.
    King TL; Clyburne JA; Lee K; Robinson BJ
    Mar Pollut Bull; 2013 Jun; 71(1-2):83-91. PubMed ID: 23623652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of autochthonous bioaugmentation and biostimulation during microcosm-simulated oil spills.
    Nikolopoulou M; Pasadakis N; Kalogerakis N
    Mar Pollut Bull; 2013 Jul; 72(1):165-73. PubMed ID: 23660443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.