These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23664869)

  • 41. Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone.
    Garnero P; Borel O; Gineyts E; Duboeuf F; Solberg H; Bouxsein ML; Christiansen C; Delmas PD
    Bone; 2006 Mar; 38(3):300-9. PubMed ID: 16271523
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The three-dimensional structure of anosteocytic lamellated bone of fish.
    Atkins A; Reznikov N; Ofer L; Masic A; Weiner S; Shahar R
    Acta Biomater; 2015 Feb; 13():311-23. PubMed ID: 25449924
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analytical basis for the determination of the lacunar-canalicular permeability of bone using cyclic loading.
    Benalla M; Cardoso L; Cowin SC
    Biomech Model Mechanobiol; 2012 Jul; 11(6):767-80. PubMed ID: 21959747
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Tensile mechanical characteristics of decalcified cortical bone matrix].
    Luo G; Zhang Y; Jiang Y; Huang F; Qin T
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Apr; 26(4):501-5. PubMed ID: 22568337
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Developments of the theory of skeletal adaptation to mechanical loading].
    Xie LQ; Liu CL
    Space Med Med Eng (Beijing); 1999 Jun; 12(3):226-30. PubMed ID: 11766714
    [TBL] [Abstract][Full Text] [Related]  

  • 46. One mechanostat or many? Modifications of the site-specific response of bone to mechanical loading by nature and nurture.
    Skerry TM
    J Musculoskelet Neuronal Interact; 2006; 6(2):122-7. PubMed ID: 16849820
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [The action of loads on bone tissue].
    Lorini G; Specchia N; Mannarini M; Rizzi L; Lisai P
    Arch Putti Chir Organi Mov; 1991; 39(2):249-72. PubMed ID: 1843073
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Incompatible mechanical properties in compact bone.
    Currey J
    J Theor Biol; 2004 Dec; 231(4):569-80. PubMed ID: 15488534
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Evaluation of bone sterngth].
    Mashiba T
    Clin Calcium; 2016 Jan; 26(1):43-8. PubMed ID: 26728529
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biological basis of bone formation, remodeling, and repair-part III: biomechanical forces.
    Allori AC; Sailon AM; Pan JH; Warren SM
    Tissue Eng Part B Rev; 2008 Sep; 14(3):285-93. PubMed ID: 18707225
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A bone remodelling model including the directional activity of BMUs.
    Martínez-Reina J; García-Aznar JM; Domínguez J; Doblaré M
    Biomech Model Mechanobiol; 2009 Apr; 8(2):111-27. PubMed ID: 18343963
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents.
    Novitskaya E; Chen PY; Lee S; Castro-Ceseña A; Hirata G; Lubarda VA; McKittrick J
    Acta Biomater; 2011 Aug; 7(8):3170-7. PubMed ID: 21571104
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Advanced computational workflow for the multi-scale modeling of the bone metabolic processes.
    Dao TT
    Med Biol Eng Comput; 2017 Jun; 55(6):923-933. PubMed ID: 27638110
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Bone remodeling numerical simulation on the basis of bone adaptive theory].
    Chen B; Zhao W; Sun Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):363-7. PubMed ID: 18610623
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A multiscale theoretical investigation of electric measurements in living bone : piezoelectricity and electrokinetics.
    Lemaire T; Capiez-Lernout E; Kaiser J; Naili S; Rohan E; Sansalone V
    Bull Math Biol; 2011 Nov; 73(11):2649-77. PubMed ID: 21347811
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effect of porous microstructure on the anisotropy of bone-like tissue: a counterexample.
    Currey JD; Zioupos P
    J Biomech; 2001 May; 34(5):707-10. PubMed ID: 11383527
    [No Abstract]   [Full Text] [Related]  

  • 57. Modeling deformation-induced fluid flow in cortical bone's canalicular-lacunar system.
    Gururaja S; Kim HJ; Swan CC; Brand RA; Lakes RS
    Ann Biomed Eng; 2005 Jan; 33(1):7-25. PubMed ID: 15709702
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Anisotropic bone remodeling model with mechanostat].
    Zhu D; Ma Z; Ma W; Dong X; Zhu X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Jun; 23(3):525-9. PubMed ID: 16856383
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Behavior of fluid in stressed bone and cellular stimulation.
    Johnson MW
    Calcif Tissue Int; 1984; 36 Suppl 1():S72-6. PubMed ID: 6430527
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Combined effects of exercise and propranolol on bone tissue in ovariectomized rats.
    Bonnet N; Beaupied H; Vico L; Dolleans E; Laroche N; Courteix D; Benhamou CL
    J Bone Miner Res; 2007 Apr; 22(4):578-88. PubMed ID: 17243867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.