These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 23664904)
1. Oxygen deprivation affects the antimicrobial action of LL-37 as determined by microplate real-time kinetic measurements under anaerobic conditions. Eini A; Sol A; Coppenhagen-Glazer S; Skvirsky Y; Zini A; Bachrach G Anaerobe; 2013 Aug; 22():20-4. PubMed ID: 23664904 [TBL] [Abstract][Full Text] [Related]
2. Effect of intracellular expression of antimicrobial peptide LL-37 on growth of escherichia coli strain TOP10 under aerobic and anaerobic conditions. Liu W; Dong SL; Xu F; Wang XQ; Withers TR; Yu HD; Wang X Antimicrob Agents Chemother; 2013 Oct; 57(10):4707-16. PubMed ID: 23856776 [TBL] [Abstract][Full Text] [Related]
3. Antimicrobial activity of four root canal sealers against endodontic pathogens. Lai CC; Huang FM; Yang HW; Chan Y; Huang MS; Chou MY; Chang YC Clin Oral Investig; 2001 Dec; 5(4):236-9. PubMed ID: 11800436 [TBL] [Abstract][Full Text] [Related]
4. Saliva enables the antimicrobial activity of LL-37 in the presence of proteases of Porphyromonas gingivalis. Gutner M; Chaushu S; Balter D; Bachrach G Infect Immun; 2009 Dec; 77(12):5558-63. PubMed ID: 19805540 [TBL] [Abstract][Full Text] [Related]
5. Synergistic effect of antimicrobial peptide LL-37 and colistin combination against multidrug-resistant Morroni G; Sante LD; Simonetti O; Brescini L; Kamysz W; Kamysz E; Mingoia M; Brenciani A; Giovanetti E; Bagnarelli P; Giacometti A; Cirioni O Future Microbiol; 2021 Mar; 16():221-227. PubMed ID: 33646013 [No Abstract] [Full Text] [Related]
6. Efficacy of the de novo-derived antimicrobial peptide WLBU2 against oral bacteria. Novak KF; Diamond WJ; Kirakodu S; Peyyala R; Anderson KW; Montelaro RC; Mietzner TA Antimicrob Agents Chemother; 2007 May; 51(5):1837-9. PubMed ID: 17325219 [TBL] [Abstract][Full Text] [Related]
7. Rice peptide with amino acid substitution inhibits biofilm formation by Porphyromonas gingivalis and Fusobacterium nucleatum. Matsugishi A; Aoki-Nonaka Y; Yokoji-Takeuchi M; Yamada-Hara M; Mikami Y; Hayatsu M; Terao Y; Domon H; Taniguchi M; Takahashi N; Yamazaki K; Tabeta K Arch Oral Biol; 2021 Jan; 121():104956. PubMed ID: 33157493 [TBL] [Abstract][Full Text] [Related]
8. Specificity of antimicrobial peptide LL-37 to neutralize periodontopathogenic lipopolysaccharide activity in human oral fibroblasts. Suphasiriroj W; Mikami M; Shimomura H; Sato S J Periodontol; 2013 Feb; 84(2):256-64. PubMed ID: 22443521 [TBL] [Abstract][Full Text] [Related]
9. Pathogenicity of capsulate and non-capsulate members of Bacteroides fragilis and B. melaninogenicus groups in mixed infection with Escherichia coli and Streptococcus pyogenes. Brook I J Med Microbiol; 1988 Nov; 27(3):191-8. PubMed ID: 2903934 [TBL] [Abstract][Full Text] [Related]
10. SMAP29 congeners demonstrate activity against oral bacteria and reduced toxicity against oral keratinocytes. Weistroffer PL; Joly S; Srikantha R; Tack BF; Brogden KA; Guthmiller JM Oral Microbiol Immunol; 2008 Apr; 23(2):89-95. PubMed ID: 18279175 [TBL] [Abstract][Full Text] [Related]
12. Streptococcus pyogenes CovRS mediates growth in iron starvation and in the presence of the human cationic antimicrobial peptide LL-37. Froehlich BJ; Bates C; Scott JR J Bacteriol; 2009 Jan; 191(2):673-7. PubMed ID: 18996992 [TBL] [Abstract][Full Text] [Related]
13. Antimicrobial and immunomodulatory properties of PGLa-AM1, CPF-AM1, and magainin-AM1: potent activity against oral pathogens. McLean DT; McCrudden MT; Linden GJ; Irwin CR; Conlon JM; Lundy FT Regul Pept; 2014 Nov; 194-195():63-8. PubMed ID: 25447193 [TBL] [Abstract][Full Text] [Related]
14. Fusobacterium nucleatum supports the growth of Porphyromonas gingivalis in oxygenated and carbon-dioxide-depleted environments. Diaz PI; Zilm PS; Rogers AH Microbiology (Reading); 2002 Feb; 148(Pt 2):467-472. PubMed ID: 11832510 [TBL] [Abstract][Full Text] [Related]
15. Effects of the antimicrobial peptide cathelicidin (LL-37) on immortalized gingival fibroblasts infected with Porphyromonas gingivalis and irradiated with 625-nm LED light. Kim J; Kim S; Lim W; Choi H; Kim O Lasers Med Sci; 2015 Nov; 30(8):2049-57. PubMed ID: 25543295 [TBL] [Abstract][Full Text] [Related]
16. Antimicrobial photodynamic therapy alone or in combination with antibiotic local administration against biofilms of Fusobacterium nucleatum and Porphyromonas gingivalis. Tavares LJ; de Avila ED; Klein MI; Panariello BHD; Spolidório DMP; Pavarina AC J Photochem Photobiol B; 2018 Nov; 188():135-145. PubMed ID: 30267963 [TBL] [Abstract][Full Text] [Related]
17. Inhibitory effect of LL-37 and human lactoferricin on growth and biofilm formation of anaerobes associated with oral diseases. Wuersching SN; Huth KC; Hickel R; Kollmuss M Anaerobe; 2021 Feb; 67():102301. PubMed ID: 33249255 [TBL] [Abstract][Full Text] [Related]
18. Augmentation of the bactericidal activities of human cathelicidin CAP18/LL-37-derived antimicrobial peptides by amino acid substitutions. Nagaoka I; Kuwahara-Arai K; Tamura H; Hiramatsu K; Hirata M Inflamm Res; 2005 Feb; 54(2):66-73. PubMed ID: 15750713 [TBL] [Abstract][Full Text] [Related]
19. Killing of Fusobacterium nucleatum, Porphyromonas gingivalis and Prevotella intermedia by protegrins. Miyasaki KT; Iofel R; Oren A; Huynh T; Lehrer RI J Periodontal Res; 1998 Feb; 33(2):91-8. PubMed ID: 9553868 [TBL] [Abstract][Full Text] [Related]
20. Resistance of Porphyromonas gingivalis ATCC 33277 to direct killing by antimicrobial peptides is protease independent. Bachrach G; Altman H; Kolenbrander PE; Chalmers NI; Gabai-Gutner M; Mor A; Friedman M; Steinberg D Antimicrob Agents Chemother; 2008 Feb; 52(2):638-42. PubMed ID: 18086848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]