These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 23664934)

  • 41. Two-dimensional 1H-13C nuclear magnetic resonance (NMR)-based comprehensive analysis of roasted coffee bean extract.
    Wei F; Furihata K; Hu F; Miyakawa T; Tanokura M
    J Agric Food Chem; 2011 Sep; 59(17):9065-73. PubMed ID: 21793585
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Free and conjugated biogenic amines in green and roasted coffee beans.
    Casal S; Mendes E; Alves MR; Alves RC; Beatriz M; Oliveira PP; Ferreira MA
    J Agric Food Chem; 2004 Oct; 52(20):6188-92. PubMed ID: 15453685
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural analysis of the carbohydrate moiety of arabinogalactan-proteins from stigmas and styles of Nicotiana alata.
    Gane AM; Craik D; Munro SL; Howlett GJ; Clarke AE; Bacic A
    Carbohydr Res; 1995 Nov; 277(1):67-85. PubMed ID: 8548791
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Discrimination of organic coffee via Fourier transform infrared-photoacoustic spectroscopy.
    Gordillo-Delgado F; Marín E; Cortés-Hernández DM; Mejía-Morales C; García-Salcedo AJ
    J Sci Food Agric; 2012 Aug; 92(11):2316-9. PubMed ID: 22378589
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An arabinogalactan-protein from cell culture of Malva sylvestris.
    Classen B; Blaschek W
    Planta Med; 2002 Mar; 68(3):232-6. PubMed ID: 11914960
    [TBL] [Abstract][Full Text] [Related]  

  • 46. DNA extraction and analysis from processed coffee beans.
    Martellossi C; Taylor EJ; Lee D; Graziosi G; Donini P
    J Agric Food Chem; 2005 Nov; 53(22):8432-6. PubMed ID: 16248533
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An acidic arabinogalactan-protein from the roots of Baptisia tinctoria.
    Wack M; Classen B; Blaschek W
    Planta Med; 2005 Sep; 71(9):814-8. PubMed ID: 16206034
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Determination of the triacylglycerol composition of coffee beans by reverse-phase high-performance liquid chromatography.
    Jham GN; Nikolova-Damyavova B; Viera M; Natalino R; Rodrigues AC
    Phytochem Anal; 2003; 14(5):310-4. PubMed ID: 14516004
    [TBL] [Abstract][Full Text] [Related]  

  • 49. GC-MS profiling of fatty acids in green coffee (Coffea arabica L.) beans and chemometric modeling for tracing geographical origins from Ethiopia.
    Mehari B; Redi-Abshiro M; Chandravanshi BS; Combrinck S; McCrindle R; Atlabachew M
    J Sci Food Agric; 2019 Jun; 99(8):3811-3823. PubMed ID: 30671959
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of nutritional descriptors of roasting intensity in beverages of Arabica and Robusta coffee beans.
    Bicho NC; Leitão AE; Ramalho JC; De Alvarenga NB; Lidon FC
    Int J Food Sci Nutr; 2011 Dec; 62(8):865-71. PubMed ID: 22032554
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative proteomical analysis of zygotic embryo and endosperm from Coffea arabica seeds.
    Koshino LL; Gomes CP; Silva LP; Eira MT; Bloch C; Franco OL; Mehta A
    J Agric Food Chem; 2008 Nov; 56(22):10922-6. PubMed ID: 18959416
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New insights into the structural characteristics of the arabinogalactan-protein (AGP) fraction of gum arabic.
    Mahendran T; Williams PA; Phillips GO; Al-Assaf S; Baldwin TC
    J Agric Food Chem; 2008 Oct; 56(19):9269-76. PubMed ID: 18783242
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Determination of acrylamide during roasting of coffee.
    Bagdonaite K; Derler K; Murkovic M
    J Agric Food Chem; 2008 Aug; 56(15):6081-6. PubMed ID: 18624446
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Roasting process of coffee beans as studied by nuclear magnetic resonance: time course of changes in composition.
    Wei F; Furihata K; Koda M; Hu F; Miyakawa T; Tanokura M
    J Agric Food Chem; 2012 Feb; 60(4):1005-12. PubMed ID: 22224944
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Isolation and identification of glycosylphosphatidylinositol-anchored arabinogalactan proteins and novel beta-glucosyl Yariv-reactive proteins from seeds of rice (Oryza sativa).
    Mashiguchi K; Yamaguchi I; Suzuki Y
    Plant Cell Physiol; 2004 Dec; 45(12):1817-29. PubMed ID: 15653800
    [TBL] [Abstract][Full Text] [Related]  

  • 56.
    Borém FM; Abreu GF; Ferreira AG; Santos MDS; Alves TDC; Alves APC
    Food Chem; 2023 Mar; 405(Pt A):134667. PubMed ID: 36356358
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Incorporation of chlorogenic acids in coffee brew melanoidins.
    Bekedam EK; Schols HA; Van Boekel MA; Smit G
    J Agric Food Chem; 2008 Mar; 56(6):2055-63. PubMed ID: 18290625
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of the influence of cultivation on the total magnesium concentration and infusion extractability in commercial arabica coffee.
    Batista Dos Santos Espinelli Junior J; von Brixen Montzel Duarte da Silva G; Branco Bastos R; Badiale Furlong E; Carapelli R
    Food Chem; 2020 Oct; 327():127012. PubMed ID: 32464457
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chemical ingredients characterization basing on
    Wang Y; Wang X; Hu G; Hong D; Bai X; Guo T; Zhou H; Li J; Qiu M
    Food Res Int; 2021 Sep; 147():110544. PubMed ID: 34399521
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ecometabolic mixture design-fingerprints from exploratory multi-block data analysis in Coffea arabica beans from climate changes: Elevated carbon dioxide and reduced soil water availability.
    Marcheafave GG; Tormena CD; Terrile AE; Salamanca-Neto CAR; Sartori ER; Rakocevic M; Bruns RE; Scarminio IS; Pauli ED
    Food Chem; 2021 Nov; 362():129716. PubMed ID: 34006394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.