BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23665512)

  • 1. Helical conformation endows poly-l-lactic acid fibers with a piezoelectric charge under tensile stress.
    Harada Y; Kadono K; Terao T; Suzuki M; Ikada Y; Tomita N
    J Vet Med Sci; 2013; 75(9):1187-92. PubMed ID: 23665512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of piezoelectric poly-L-lactic acid films in promoting ossification in vivo.
    Shimono T; Matsunaga S; Fukada E; Hattori T; Shikinami Y
    In Vivo; 1996; 10(5):471-6. PubMed ID: 8899424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Piezoelectricity of chiral polymeric fiber and its application in biomedical engineering.
    Tajitsu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):1000-8. PubMed ID: 18519202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of poly (L-lactic acid) nanofiber orientation on osteogenic responses of human osteoblast-like MG63 cells.
    Wang B; Cai Q; Zhang S; Yang X; Deng X
    J Mech Behav Biomed Mater; 2011 May; 4(4):600-9. PubMed ID: 21396609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tensile properties and biological response of poly(L-lactic acid) felt graft: an experimental trial for rotator-cuff reconstruction.
    Aoki M; Miyamoto S; Okamura K; Yamashita T; Ikada Y; Matsuda S
    J Biomed Mater Res B Appl Biomater; 2004 Nov; 71(2):252-9. PubMed ID: 15455368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Curcumin impregnation improves the mechanical properties and reduces the inflammatory response associated with poly(L-lactic acid) fiber.
    Su SH; Nguyen KT; Satasiya P; Greilich PE; Tang L; Eberhart RC
    J Biomater Sci Polym Ed; 2005; 16(3):353-70. PubMed ID: 15850289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fiber-matrix interface studies on bioabsorbable composite materials for internal fixation of bone fractures. I. Raw material evaluation and measurement of fiber-matrix interfacial adhesion.
    Slivka MA; Chu CC; Adisaputro IA
    J Biomed Mater Res; 1997 Sep; 36(4):469-77. PubMed ID: 9294762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fiber-matrix interface studies on bioabsorbable composite materials for internal fixation of bone fractures. II. A new method using laser scanning confocal microscopy.
    Slivka MA; Chu CC
    J Biomed Mater Res; 1997 Dec; 37(3):353-62. PubMed ID: 9368140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technique paper for wet-spinning poly(L-lactic acid) and poly(DL-lactide-co-glycolide) monofilament fibers.
    Nelson KD; Romero A; Waggoner P; Crow B; Borneman A; Smith GM
    Tissue Eng; 2003 Dec; 9(6):1323-30. PubMed ID: 14670119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical and histological evaluation of the application of biodegradable poly-L-lactic cushion to the plate internal fixation for bone fracture healing.
    Fan Y; Xiu K; Duan H; Zhang M
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S7-S16. PubMed ID: 18291564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforced poly(L-lactic acid) fibres as suture material.
    Lam KH; Nijenhuis AJ; Bartels H; Postema AR; Jonkman MF; Pennings AJ; Nieuwenhuis P
    J Appl Biomater; 1995; 6(3):191-7. PubMed ID: 7492810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of poly(L-)lactic acid suture applied to fascial closure in rats.
    Heino A; Naukkarinen A; Kulju T; Törmälä P; Pohjonen T; Mäkelä EA
    J Biomed Mater Res; 1996 Feb; 30(2):187-92. PubMed ID: 9019483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair.
    Chen X; Li Y; Gu N
    Biomed Mater; 2010 Aug; 5(4):044104. PubMed ID: 20683132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of low-intensity pulsed ultrasound on bioabsorbable self-reinforced poly L-lactide screws.
    Handolin L; Pohjonen T; Partio EK; Arnala I; Törmälä P; Rokkanen P
    Biomaterials; 2002 Jul; 23(13):2733-6. PubMed ID: 12059023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of electron beam irradiation on the structure and properties of electrospun PLLA and PLLA/PDLA blend nanofibers.
    Zhang X; Kotaki M; Okubayashi S; Sukigara S
    Acta Biomater; 2010 Jan; 6(1):123-9. PubMed ID: 19508907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of mechanical and electrostatic properties of poly(lactic) acid fibers and poly(lactic) acid-carbon nanotube composites using atomic force microscopy.
    Iqbal Q; Bernstein P; Zhu Y; Rahamim J; Cebe P; Staii C
    Nanotechnology; 2015 Mar; 26(10):105702. PubMed ID: 25683087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MRI study of bioabsorbable poly-L-lactic acid devices used for fixation of fracture and osteotomies.
    Marumo K; Sato Y; Suzuki H; Kurosaka D
    J Orthop Sci; 2006 Mar; 11(2):154-8. PubMed ID: 16568387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of bioabsorbable implants as orthodontic anchorage in dogs.
    Aoki T; Ogawa K; Miyazawa K; Kawai T; Goto S
    Dent Mater J; 2005 Dec; 24(4):628-35. PubMed ID: 16445027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue response to poly(L-lactic acid)-based blend with phospholipid polymer for biodegradable cardiovascular stents.
    Kim HI; Ishihara K; Lee S; Seo JH; Kim HY; Suh D; Kim MU; Konno T; Takai M; Seo JS
    Biomaterials; 2011 Mar; 32(9):2241-7. PubMed ID: 21185597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies.
    Lu HH; Cooper JA; Manuel S; Freeman JW; Attawia MA; Ko FK; Laurencin CT
    Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.