These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23665512)

  • 81. Mechanical properties of biodegradable ligament augmentation device of poly(L-lactide) in vitro and in vivo.
    Laitinen O; Törmälä P; Taurio R; Skutnabb K; Saarelainen K; Iivonen T; Vainionpää S
    Biomaterials; 1992; 13(14):1012-6. PubMed ID: 1472587
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Raman mapping of piezoelectric poly(l-lactic acid) films for force sensors.
    Babichuk IS; Lin C; Qiu Y; Zhu H; Ye TT; Gao Z; Yang J
    RSC Adv; 2022 Sep; 12(43):27687-27697. PubMed ID: 36320245
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Collapse pressures of biodegradable stents.
    Venkatraman S; Poh TL; Vinalia T; Mak KH; Boey F
    Biomaterials; 2003 May; 24(12):2105-11. PubMed ID: 12628831
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Preparation and properties of ProNectin F-coated biodegradable hollow fibers.
    El-Salmawy A; Kitagawa T; Ko IK; Murakami A; Kimura Y; Yamaoka T; Iwata H
    J Artif Organs; 2005; 8(4):245-51. PubMed ID: 16362522
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Key Factors of Mechanical Strength and Toughness in Oriented Poly(l-lactic acid) Monofilaments for a Bioresorbable Self-Expanding Stent.
    Wang B; Liu M; Liu J; Tian Y; Liu W; Wu G; Cheng J; Zhang Y; Zhao G; Ni Z
    Langmuir; 2022 Nov; 38(44):13477-13487. PubMed ID: 36306177
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Development of a novel bioabsorbable implant that is substituted by adipose tissue in vivo.
    Ogino S; Morimoto N; Sakamoto M; Jinno C; Yoshikawa K; Enoshiri T; Sakamoto Y; Taira T; Suzuki S
    J Tissue Eng Regen Med; 2018 Mar; 12(3):633-641. PubMed ID: 28548695
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Biocompatibility of silver nitrate and ofloxacine coated bioabsorbable SR-PLLA rods.
    Multanen M; Talja M; Tammela TL; Seppälä J; Välimaa T; Järvi K; Törmälä P
    Urol Res; 2001 Apr; 29(2):113-7. PubMed ID: 11396728
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Biodegradation and Biocompatibility of Poly L-lactic Acid Implantable Mesh.
    Yoon SD; Kwon YS; Lee KS
    Int Neurourol J; 2017 Apr; 21(Suppl 1):S48-54. PubMed ID: 28446016
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Biological performance of a bioabsorbable Poly (L-Lactic Acid) produced in polymerization unit:
    Xavier M; Farez N; Salvatierra PL; Jardini AL; Kharmandayan P; Feldman S
    F1000Res; 2021; 10():1275. PubMed ID: 35035900
    [No Abstract]   [Full Text] [Related]  

  • 90. Subdermal implants of poly(L-lactic acid) with plasticizer: an ultrastructural study in rats.
    Silva DR; Joazeiro PP; Duek EA; Alberto-Rincon MC
    J Biomater Sci Polym Ed; 2006; 17(1-2):177-85. PubMed ID: 16411607
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Application of Piezoelectric PLLA Braided Cord as Wearable Sensor to Realize Monitoring System for Indoor Dogs with Less Physical or Mental Stress.
    Tajitsu Y; Takarada J; Hikichi T; Sugii R; Takatani K; Yanagimoto H; Nakanishi R; Shiomi S; Kitamoto D; Nakiri T; Takeuchi O; Deguchi M; Muto T; Kuroki K; Amano W; Misumi A; Takahashi M; Sugiyama K; Tanabe A; Kamohara S; Nisho R; Takeshita K
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677204
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Application of nanosheets as an anti-adhesion barrier in partial hepatectomy.
    Niwa D; Koide M; Fujie T; Goda N; Takeoka S
    J Biomed Mater Res B Appl Biomater; 2013 Oct; 101(7):1251-8. PubMed ID: 23687051
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Electro-biorheology.
    Fukada E
    Biorheology; 1984; 21(1-2):75-84. PubMed ID: 6466798
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Mechanical writing of electrical polarization in poly (L-lactic) acid.
    Barroca N; Collins L; Rodriguez BJ; Fernandes MHV; Vilarinho PM
    Acta Biomater; 2022 Feb; 139():249-258. PubMed ID: 34111519
    [TBL] [Abstract][Full Text] [Related]  

  • 95. De novo adipogenesis using a bioabsorbable implant without additional cells or growth factors.
    Ogino S; Sakamoto M; Lee S; Yamanaka H; Tsuge I; Arata J; Sakamoto Y; Kambe Y; Yamaoka T; Morimoto N
    J Tissue Eng Regen Med; 2020 Jul; 14(7):920-930. PubMed ID: 32293793
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Fabrication of piezoelectric poly(L-lactic acid)/BaTiO
    Oh HJ; Kim DK; Choi YC; Lim SJ; Jeong JB; Ko JH; Hahm WG; Kim SW; Lee Y; Kim H; Yeang BJ
    Sci Rep; 2020 Oct; 10(1):16339. PubMed ID: 33004904
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Application of poly(L-lactic acid) particles for the suppression of genetic resistance to bone marrow allografts by reticuloendothelial system-blockade.
    Kadowaki S; Sugimoto K; Tsurumaki Y; Tabata Y; Ikada Y; Fujita J; Mori KJ
    Biomed Pharmacother; 1993; 47(9):385-91. PubMed ID: 8068860
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Influence of parameters on mechanical properties of poly (L-lactic acid) helical stents.
    Zhao G; Liu J; Liu M; Tian Y; Cheng J; Liu W; Ni Z
    J Biomed Mater Res B Appl Biomater; 2022 Jul; 110(7):1705-1712. PubMed ID: 35157351
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The influence of thermal treatment on the mechanical characteristics of a PLLA coiled stent.
    Welch TR; Eberhart RC; Chuong CJ
    J Biomed Mater Res B Appl Biomater; 2009 Jul; 90(1):302-11. PubMed ID: 19085931
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Preparation of Crystallites for Oriented Poly(Lactic Acid) Films Using a Casting Method under a Magnetic Field.
    Hara S; Watanabe S; Takahashi K; Shimizu S; Ikake H
    Polymers (Basel); 2018 Sep; 10(10):. PubMed ID: 30961008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.