These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 23665591)

  • 1. Temporal analysis of the magnaporthe oryzae proteome during conidial germination and cyclic AMP (cAMP)-mediated appressorium formation.
    Franck WL; Gokce E; Oh Y; Muddiman DC; Dean RA
    Mol Cell Proteomics; 2013 Aug; 12(8):2249-65. PubMed ID: 23665591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae.
    Kim S; Park SY; Kim KS; Rho HS; Chi MH; Choi J; Park J; Kong S; Park J; Goh J; Lee YH
    PLoS Genet; 2009 Dec; 5(12):e1000757. PubMed ID: 19997500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The putative Gγ subunit gene MGG1 is required for conidiation, appressorium formation, mating and pathogenicity in Magnaporthe oryzae.
    Li Y; Que Y; Liu Y; Yue X; Meng X; Zhang Z; Wang Z
    Curr Genet; 2015 Nov; 61(4):641-51. PubMed ID: 25944571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A class-II myosin is required for growth, conidiation, cell wall integrity and pathogenicity of Magnaporthe oryzae.
    Guo M; Tan L; Nie X; Zhang Z
    Virulence; 2017 Oct; 8(7):1335-1354. PubMed ID: 28448785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PKA activity is essential for relieving the suppression of hyphal growth and appressorium formation by MoSfl1 in Magnaporthe oryzae.
    Li Y; Zhang X; Hu S; Liu H; Xu JR
    PLoS Genet; 2017 Aug; 13(8):e1006954. PubMed ID: 28806765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MoGrr1, a novel F-box protein, is involved in conidiogenesis and cell wall integrity and is critical for the full virulence of Magnaporthe oryzae.
    Guo M; Gao F; Zhu X; Nie X; Pan Y; Gao Z
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):8075-88. PubMed ID: 26227409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GATA-Dependent Glutaminolysis Drives Appressorium Formation in Magnaporthe oryzae by Suppressing TOR Inhibition of cAMP/PKA Signaling.
    Marroquin-Guzman M; Wilson RA
    PLoS Pathog; 2015 Apr; 11(4):e1004851. PubMed ID: 25901357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphoproteome Analysis Links Protein Phosphorylation to Cellular Remodeling and Metabolic Adaptation during Magnaporthe oryzae Appressorium Development.
    Franck WL; Gokce E; Randall SM; Oh Y; Eyre A; Muddiman DC; Dean RA
    J Proteome Res; 2015 Jun; 14(6):2408-24. PubMed ID: 25926025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The farnesyltransferase β-subunit RAM1 regulates localization of RAS proteins and appressorium-mediated infection in Magnaporthe oryzae.
    Aboelfotoh Hendy A; Xing J; Chen X; Chen XL
    Mol Plant Pathol; 2019 Sep; 20(9):1264-1278. PubMed ID: 31250536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ZNF1 Encodes a Putative C2H2 Zinc-Finger Protein Essential for Appressorium Differentiation by the Rice Blast Fungus Magnaporthe oryzae.
    Yue X; Que Y; Xu L; Deng S; Peng Y; Talbot NJ; Wang Z
    Mol Plant Microbe Interact; 2016 Jan; 29(1):22-35. PubMed ID: 26441322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae.
    Cao H; Huang P; Zhang L; Shi Y; Sun D; Yan Y; Liu X; Dong B; Chen G; Snyder JH; Lin F; Lu J
    New Phytol; 2016 Aug; 211(3):1035-51. PubMed ID: 27041000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-function analyses of the Pth11 receptor reveal an important role for CFEM motif and redox regulation in rice blast.
    Kou Y; Tan YH; Ramanujam R; Naqvi NI
    New Phytol; 2017 Apr; 214(1):330-342. PubMed ID: 27898176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PAF104, a synthetic peptide to control rice blast disease by blocking appressorium formation in Magnaporthe oryzae.
    Rebollar A; López-García B
    Mol Plant Microbe Interact; 2013 Dec; 26(12):1407-16. PubMed ID: 23902261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae.
    Oh Y; Donofrio N; Pan H; Coughlan S; Brown DE; Meng S; Mitchell T; Dean RA
    Genome Biol; 2008; 9(5):R85. PubMed ID: 18492280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A putative PKA phosphorylation site S227 in MoSom1 is essential for infection-related morphogenesis and pathogenicity in Magnaporthe oryzae.
    Deng S; Xu L; Xu Z; Lv W; Chen Z; Yang N; Talbot NJ; Wang Z
    Cell Microbiol; 2021 Oct; 23(10):e13370. PubMed ID: 34089626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Cyclase-associated protein Cap1 is important for proper regulation of infection-related morphogenesis in Magnaporthe oryzae.
    Zhou X; Zhang H; Li G; Shaw B; Xu JR
    PLoS Pathog; 2012 Sep; 8(9):e1002911. PubMed ID: 22969430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Putative RhoGAP proteins orchestrate vegetative growth, conidiogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae.
    Ye W; Chen X; Zhong Z; Chen M; Shi L; Zheng H; Lin Y; Zhang D; Lu G; Li G; Chen J; Wang Z
    Fungal Genet Biol; 2014 Jun; 67():37-50. PubMed ID: 24731806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnaporthe oryzae Auxiliary Activity Protein MoAa91 Functions as Chitin-Binding Protein To Induce Appressorium Formation on Artificial Inductive Surfaces and Suppress Plant Immunity.
    Li Y; Liu X; Liu M; Wang Y; Zou Y; You Y; Yang L; Hu J; Zhang H; Zheng X; Wang P; Zhang Z
    mBio; 2020 Mar; 11(2):. PubMed ID: 32209696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of extracellular matrix and integrin-like proteins on conidial adhesion and appressorium differentiation in Magnaporthe oryzae.
    Bae CY; Kim S; Choi WB; Lee YH
    J Microbiol Biotechnol; 2007 Jul; 17(7):1198-203. PubMed ID: 18051333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic deletion of RGS1 and COS1 may reduce the pathogenicity of Magnaporthe oryzae.
    Na H; Bang A; Qing-Biao X; Xia Y; Hui-Min F; Hong-Li L; Chao-Zu H
    Arch Microbiol; 2019 Aug; 201(6):807-816. PubMed ID: 30874825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.