These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 23665692)

  • 1. In situ ethyl ester production from wet algal biomass under microwave-mediated supercritical ethanol conditions.
    Patil PD; Reddy H; Muppaneni T; Schaub T; Holguin FO; Cooke P; Lammers P; Nirmalakhandan N; Li Y; Lu X; Deng S
    Bioresour Technol; 2013 Jul; 139():308-15. PubMed ID: 23665692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of microwave-enhanced methanolysis of algal biomass to biodiesel under temperature controlled conditions.
    Patil P; Reddy H; Muppaneni T; Ponnusamy S; Sun Y; Dailey P; Cooke P; Patil U; Deng S
    Bioresour Technol; 2013 Jun; 137():278-85. PubMed ID: 23587830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology.
    Patil PD; Gude VG; Mannarswamy A; Cooke P; Munson-McGee S; Nirmalakhandan N; Lammers P; Deng S
    Bioresour Technol; 2011 Jan; 102(2):1399-405. PubMed ID: 20933395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extractive-transesterification of algal lipids under microwave irradiation with hexane as solvent.
    Martinez-Guerra E; Gude VG; Mondala A; Holmes W; Hernandez R
    Bioresour Technol; 2014 Mar; 156():240-7. PubMed ID: 24508902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concurrent production of biodiesel and chemicals through wet in situ transesterification of microalgae.
    Im H; Kim B; Lee JW
    Bioresour Technol; 2015 Oct; 193():386-92. PubMed ID: 26143574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions.
    Patil PD; Gude VG; Mannarswamy A; Deng S; Cooke P; Munson-McGee S; Rhodes I; Lammers P; Nirmalakhandan N
    Bioresour Technol; 2011 Jan; 102(1):118-22. PubMed ID: 20591655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Process improvements for the supercritical in situ transesterification of carbonized algal biomass.
    Levine RB; Bollas A; Savage PE
    Bioresour Technol; 2013 May; 136():556-64. PubMed ID: 23567731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction.
    Cheng J; Huang R; Yu T; Li T; Zhou J; Cen K
    Bioresour Technol; 2014 Jan; 151():415-8. PubMed ID: 24183493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concurrent extraction and reaction for the production of biodiesel from wet microalgae.
    Im H; Lee H; Park MS; Yang JW; Lee JW
    Bioresour Technol; 2014; 152():534-7. PubMed ID: 24291292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid alkali catalyzed transesterification of microalgae lipids to biodiesel using simultaneous cooling and microwave heating and its optimization.
    Chee Loong T; Idris A
    Bioresour Technol; 2014 Dec; 174():311-5. PubMed ID: 25443622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst.
    Tran DT; Chen CL; Chang JS
    Bioresour Technol; 2013 May; 135():213-21. PubMed ID: 23131310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wet in situ transesterification of microalgae using ethyl acetate as a co-solvent and reactant.
    Park J; Kim B; Chang YK; Lee JW
    Bioresour Technol; 2017 Apr; 230():8-14. PubMed ID: 28142105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodiesel from wet microalgae: extraction with hexane after the microwave-assisted transesterification of lipids.
    Cheng J; Huang R; Li T; Zhou J; Cen K
    Bioresour Technol; 2014 Oct; 170():69-75. PubMed ID: 25125194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of direct transesterification of microalgae using microwave irradiation.
    Teo CL; Idris A
    Bioresour Technol; 2014 Dec; 174():281-6. PubMed ID: 25463809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of direct conversion method for microalgal biodiesel production using wet biomass of Nannochloropsis salina.
    Kim TH; Suh WI; Yoo G; Mishra SK; Farooq W; Moon M; Shrivastav A; Park MS; Yang JW
    Bioresour Technol; 2015 Sep; 191():438-44. PubMed ID: 25827362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microalgae from domestic wastewater facility's high rate algal pond: Lipids extraction, characterization and biodiesel production.
    Drira N; Piras A; Rosa A; Porcedda S; Dhaouadi H
    Bioresour Technol; 2016 Apr; 206():239-244. PubMed ID: 26866759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-step in situ biodiesel production from microalgae with high free fatty acid content.
    Dong T; Wang J; Miao C; Zheng Y; Chen S
    Bioresour Technol; 2013 May; 136():8-15. PubMed ID: 23548399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ transesterification of highly wet microalgae using hydrochloric acid.
    Kim B; Im H; Lee JW
    Bioresour Technol; 2015 Jun; 185():421-5. PubMed ID: 25769690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodiesel from mixed culture algae via a wet lipid extraction procedure.
    Sathish A; Sims RC
    Bioresour Technol; 2012 Aug; 118():643-7. PubMed ID: 22721684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of co-solvents in improving the direct transesterification of wet microalgal biomass under supercritical condition.
    Abedini Najafabadi H; Vossoughi M; Pazuki G
    Bioresour Technol; 2015 Oct; 193():90-6. PubMed ID: 26117240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.