These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23665749)

  • 1. Temporal processing of self-motion: modeling reaction times for rotations and translations.
    Soyka F; Bülthoff HH; Barnett-Cowan M
    Exp Brain Res; 2013 Jul; 228(1):51-62. PubMed ID: 23665749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling direction discrimination thresholds for yaw rotations around an earth-vertical axis for arbitrary motion profiles.
    Soyka F; Giordano PR; Barnett-Cowan M; Bülthoff HH
    Exp Brain Res; 2012 Jul; 220(1):89-99. PubMed ID: 22623095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of Semi-Circular Canal and Otolith Cues for Direction Discrimination during Eccentric Rotations.
    Soyka F; Bülthoff HH; Barnett-Cowan M
    PLoS One; 2015; 10(8):e0136925. PubMed ID: 26322782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting direction detection thresholds for arbitrary translational acceleration profiles in the horizontal plane.
    Soyka F; Robuffo Giordano P; Beykirch K; Bülthoff HH
    Exp Brain Res; 2011 Mar; 209(1):95-107. PubMed ID: 21234751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vestibular heading discrimination and sensitivity to linear acceleration in head and world coordinates.
    MacNeilage PR; Banks MS; DeAngelis GC; Angelaki DE
    J Neurosci; 2010 Jul; 30(27):9084-94. PubMed ID: 20610742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual signals of head rotation induce gravity-dependent inferences of linear acceleration.
    Khosravi-Hashemi N; Forbes PA; Dakin CJ; Blouin JS
    J Physiol; 2019 Nov; 597(21):5231-5246. PubMed ID: 31483492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency-dependent integration of auditory and vestibular cues for self-motion perception.
    Shayman CS; Peterka RJ; Gallun FJ; Oh Y; Chang NN; Hullar TE
    J Neurophysiol; 2020 Mar; 123(3):936-944. PubMed ID: 31940239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal visual-vestibular integration under conditions of conflicting intersensory motion profiles.
    Butler JS; Campos JL; Bülthoff HH
    Exp Brain Res; 2015 Feb; 233(2):587-97. PubMed ID: 25361642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual contributions to human self-motion perception during horizontal body rotation.
    Mergner T; Schweigart G; Müller M; Hlavacka F; Becker W
    Arch Ital Biol; 2000 Apr; 138(2):139-66. PubMed ID: 10782255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perception of rotation, path, and heading in circular trajectories.
    Nooij SA; Nesti A; Bülthoff HH; Pretto P
    Exp Brain Res; 2016 Aug; 234(8):2323-37. PubMed ID: 27056085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impacts of Rotation Axis and Frequency on Vestibular Perceptual Thresholds.
    Wagner AR; Kobel MJ; Merfeld DM
    Multisens Res; 2022 Jan; 35(3):259-287. PubMed ID: 35065535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural processing of gravito-inertial cues in humans. II. Influence of the semicircular canals during eccentric rotation.
    Merfeld DM; Zupan LH; Gifford CA
    J Neurophysiol; 2001 Apr; 85(4):1648-60. PubMed ID: 11287488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human discrimination of head-centred visual-inertial yaw rotations.
    Nesti A; Beykirch KA; Pretto P; Bülthoff HH
    Exp Brain Res; 2015 Dec; 233(12):3553-64. PubMed ID: 26319547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of Inertial Sensory Information in the Perception of Whole Body Yaw Rotation.
    Nesti A; de Winkel K; Bülthoff HH
    PLoS One; 2017; 12(1):e0170497. PubMed ID: 28125681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of acceleration and jerk in perception of above-threshold surge motion.
    de Winkel KN; Soyka F; Bülthoff HH
    Exp Brain Res; 2020 Mar; 238(3):699-711. PubMed ID: 32060563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-motion perception during conflicting visual-vestibular acceleration.
    Ishida M; Fushiki H; Nishida H; Watanabe Y
    J Vestib Res; 2008; 18(5-6):267-72. PubMed ID: 19542600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vestibular thresholds for yaw rotation about an earth-vertical axis as a function of frequency.
    Grabherr L; Nicoucar K; Mast FW; Merfeld DM
    Exp Brain Res; 2008 Apr; 186(4):677-81. PubMed ID: 18350283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Envelope statistics of self-motion signals experienced by human subjects during everyday activities: Implications for vestibular processing.
    Carriot J; Jamali M; Cullen KE; Chacron MJ
    PLoS One; 2017; 12(6):e0178664. PubMed ID: 28575032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating vestibular contributions to rotation and tilt perception.
    Kobel MJ; Wagner AR; Merfeld DM
    Exp Brain Res; 2023 Jul; 241(7):1873-1885. PubMed ID: 37310477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Canal-otolith interactions and detection thresholds of linear and angular components during curved-path self-motion.
    MacNeilage PR; Turner AH; Angelaki DE
    J Neurophysiol; 2010 Aug; 104(2):765-73. PubMed ID: 20554843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.