These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 23665893)
1. vsiRNAs derived from the miRNA-generating sites of pri-tae-miR159a based on the BSMV system play positive roles in the wheat response to Puccinia striiformis f. sp. tritici through the regulation of taMyb3 expression. Feng H; Zhang Q; Li H; Wang X; Wang X; Duan X; Wang B; Kang Z Plant Physiol Biochem; 2013 Jul; 68():90-5. PubMed ID: 23665893 [TBL] [Abstract][Full Text] [Related]
2. Monodehydroascorbate reductase gene, regulated by the wheat PN-2013 miRNA, contributes to adult wheat plant resistance to stripe rust through ROS metabolism. Feng H; Wang X; Zhang Q; Fu Y; Feng C; Wang B; Huang L; Kang Z Biochim Biophys Acta; 2014 Jan; 1839(1):1-12. PubMed ID: 24269602 [TBL] [Abstract][Full Text] [Related]
3. Identification of microRNAs and their corresponding targets involved in the susceptibility interaction of wheat response to Puccinia striiformis f. sp. tritici. Feng H; Wang T; Feng C; Zhang Q; Zhang X; Huang L; Wang X; Kang Z Physiol Plant; 2016 May; 157(1):95-107. PubMed ID: 26563616 [TBL] [Abstract][Full Text] [Related]
4. Islam MA; Guo J; Peng H; Tian S; Bai X; Zhu H; Kang Z; Guo J Genes (Basel); 2020 Dec; 11(12):. PubMed ID: 33287151 [TBL] [Abstract][Full Text] [Related]
5. Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene. Wang B; Sun Y; Song N; Zhao M; Liu R; Feng H; Wang X; Kang Z New Phytol; 2017 Jul; 215(1):338-350. PubMed ID: 28464281 [TBL] [Abstract][Full Text] [Related]
6. The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust. Feng H; Duan X; Zhang Q; Li X; Wang B; Huang L; Wang X; Kang Z Mol Plant Pathol; 2014 Apr; 15(3):284-96. PubMed ID: 24128392 [TBL] [Abstract][Full Text] [Related]
7. Target of tae-miR408, a chemocyanin-like protein gene (TaCLP1), plays positive roles in wheat response to high-salinity, heavy cupric stress and stripe rust. Feng H; Zhang Q; Wang Q; Wang X; Liu J; Li M; Huang L; Kang Z Plant Mol Biol; 2013 Nov; 83(4-5):433-43. PubMed ID: 23864359 [TBL] [Abstract][Full Text] [Related]
8. TaAMT2;3a, a wheat AMT2-type ammonium transporter, facilitates the infection of stripe rust fungus on wheat. Jiang J; Zhao J; Duan W; Tian S; Wang X; Zhuang H; Fu J; Kang Z BMC Plant Biol; 2019 Jun; 19(1):239. PubMed ID: 31170918 [TBL] [Abstract][Full Text] [Related]
9. RLP1.1, a novel wheat receptor-like protein gene, is involved in the defence response against Puccinia striiformis f. sp. tritici. Jiang Z; Ge S; Xing L; Han D; Kang Z; Zhang G; Wang X; Wang X; Chen P; Cao A J Exp Bot; 2013 Sep; 64(12):3735-46. PubMed ID: 23881396 [TBL] [Abstract][Full Text] [Related]
10. TaEIL1, a wheat homologue of AtEIN3, acts as a negative regulator in the wheat-stripe rust fungus interaction. Duan X; Wang X; Fu Y; Tang C; Li X; Cheng Y; Feng H; Huang L; Kang Z Mol Plant Pathol; 2013 Sep; 14(7):728-39. PubMed ID: 23730729 [TBL] [Abstract][Full Text] [Related]
11. A stripe rust effector Pst18363 targets and stabilises TaNUDX23 that promotes stripe rust disease. Yang Q; Huai B; Lu Y; Cai K; Guo J; Zhu X; Kang Z; Guo J New Phytol; 2020 Jan; 225(2):880-895. PubMed ID: 31529497 [TBL] [Abstract][Full Text] [Related]
12. Comparative transcriptomic insights into molecular mechanisms of the susceptibility wheat variety MX169 response to Lv X; Deng J; Zhou C; Abdullah A; Yang Z; Wang Z; Yang L; Zhao B; Li Y; Ma Z Microbiol Spectr; 2024 Aug; 12(8):e0377423. PubMed ID: 38916358 [TBL] [Abstract][Full Text] [Related]
13. TaMDHAR4, a monodehydroascorbate reductase gene participates in the interactions between wheat and Puccinia striiformis f. sp. tritici. Feng H; Liu W; Zhang Q; Wang X; Wang X; Duan X; Li F; Huang L; Kang Z Plant Physiol Biochem; 2014 Mar; 76():7-16. PubMed ID: 24448320 [TBL] [Abstract][Full Text] [Related]
14. The RLK protein TaCRK10 activates wheat high-temperature seedling-plant resistance to stripe rust through interacting with TaH2A.1. Wang J; Wang J; Li J; Shang H; Chen X; Hu X Plant J; 2021 Dec; 108(5):1241-1255. PubMed ID: 34583419 [TBL] [Abstract][Full Text] [Related]
15. Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the Barley stripe mosaic virus. Panwar V; McCallum B; Bakkeren G Plant Mol Biol; 2013 Apr; 81(6):595-608. PubMed ID: 23417582 [TBL] [Abstract][Full Text] [Related]
16. Wheat Gene Mamun MA; Tang C; Sun Y; Islam MN; Liu P; Wang X; Kang Z Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29874811 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome analysis provides insights into the mechanisms underlying wheat cultivar Shumai126 responding to stripe rust. Wang Y; Huang L; Luo W; Jin Y; Gong F; He J; Liu D; Zheng Y; Wu B Gene; 2021 Feb; 768():145290. PubMed ID: 33157204 [TBL] [Abstract][Full Text] [Related]
18. Glycerol-3-phosphate metabolism in wheat contributes to systemic acquired resistance against Puccinia striiformis f. sp. tritici. Yang Y; Zhao J; Liu P; Xing H; Li C; Wei G; Kang Z PLoS One; 2013; 8(11):e81756. PubMed ID: 24312351 [TBL] [Abstract][Full Text] [Related]
19. Wheat TaNPSN SNARE homologues are involved in vesicle-mediated resistance to stripe rust (Puccinia striiformis f. sp. tritici). Wang X; Wang X; Deng L; Chang H; Dubcovsky J; Feng H; Han Q; Huang L; Kang Z J Exp Bot; 2014 Sep; 65(17):4807-20. PubMed ID: 24963004 [TBL] [Abstract][Full Text] [Related]
20. Wheat transcription factor TaWRKY70 is positively involved in high-temperature seedling plant resistance to Puccinia striiformis f. sp. tritici. Wang J; Tao F; An F; Zou Y; Tian W; Chen X; Xu X; Hu X Mol Plant Pathol; 2017 Jun; 18(5):649-661. PubMed ID: 27145738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]