BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 23666031)

  • 1. The derivation of a chiral substituent code for secondary alcohols and its application to the prediction of enantioselectivity.
    Suo JJ; Zhang QY; Li JY; Zhou YM; Xu L
    J Mol Graph Model; 2013 Jun; 43():11-20. PubMed ID: 23666031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.
    Andrade LH; Barcellos T
    Org Lett; 2009 Jul; 11(14):3052-5. PubMed ID: 19552446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physicochemical stereodescriptors of atomic chiral centers.
    Zhang QY; Aires-de-Sousa J
    J Chem Inf Model; 2006; 46(6):2278-87. PubMed ID: 17125170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmentally friendly, efficient resolution of racemic secondary alcohols by lipase-catalyzed enantioselective transesterification in ionic liquids in the presence of organic bases.
    Wu XM; Xin JY; Sun W; Xia CG
    Chem Biodivers; 2007 Feb; 4(2):183-8. PubMed ID: 17311231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric autocatalysis of pyrimidyl alkanol and its application to the study on the origin of homochirality.
    Soai K; Kawasaki T; Matsumoto A
    Acc Chem Res; 2014 Dec; 47(12):3643-54. PubMed ID: 25511374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structural basis for enantioselective inhibition of Candida rugosa lipase by long-chain aliphatic alcohols.
    Holmquist M; Haeffner F; Norin T; Hult K
    Protein Sci; 1996 Jan; 5(1):83-8. PubMed ID: 8771199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model.
    Schulz T; Pleiss J; Schmid RD
    Protein Sci; 2000 Jun; 9(6):1053-62. PubMed ID: 10892799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of absolute configuration of secondary alcohols using lipase-catalyzed kinetic resolutions.
    Jing Q; Kazlauskas RJ
    Chirality; 2008 May; 20(5):724-35. PubMed ID: 18278808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of enantioselectivity of lipase catalyzed kinetic resolution using umbrella sampling.
    Mathpati AC; Bhanage BM
    J Biotechnol; 2018 Oct; 283():70-80. PubMed ID: 30031094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How substrate solvation contributes to the enantioselectivity of subtilisin toward secondary alcohols.
    Savile CK; Kazlauskas RJ
    J Am Chem Soc; 2005 Sep; 127(35):12228-9. PubMed ID: 16131193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel chemoenzymatic strategy for the synthesis of enantiomerically pure secondary alcohols with sterically similar substituents.
    Abad JL; Soldevila C; Camps F; Clapés P
    J Org Chem; 2003 Jun; 68(13):5351-6. PubMed ID: 12816498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic and dynamic kinetic resolution of secondary alcohols with ionic-surfactant-coated Burkholderia cepacia lipase: substrate scope and enantioselectivity.
    Kim C; Lee J; Cho J; Oh Y; Choi YK; Choi E; Park J; Kim MJ
    J Org Chem; 2013 Mar; 78(6):2571-8. PubMed ID: 23406287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly enantioselective organocatalytic oxidative kinetic resolution of secondary alcohols using chiral alkoxyamines as precatalysts: catalyst structure, active species, and substrate scope.
    Murakami K; Sasano Y; Tomizawa M; Shibuya M; Kwon E; Iwabuchi Y
    J Am Chem Soc; 2014 Dec; 136(50):17591-600. PubMed ID: 25412147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic assignment of absolute configuration from 1D NMR data.
    Zhang QY; Carrera G; Gomes MJ; Aires-de-Sousa J
    J Org Chem; 2005 Mar; 70(6):2120-30. PubMed ID: 15760195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular modeling of the enantioselectivity in lipase-catalyzed transesterification reactions.
    Haeffner F; Norin T; Hult K
    Biophys J; 1998 Mar; 74(3):1251-62. PubMed ID: 9512023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithium binaphtholate-catalyzed asymmetric addition of lithium acetylides to carbonyl compounds.
    Kotani S; Kukita K; Tanaka K; Ichibakase T; Nakajima M
    J Org Chem; 2014 Jun; 79(11):4817-25. PubMed ID: 24750104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of substituent and temperature on enantioselectivity for lipase-catalyzed esterification of 2-(4-substituted phenoxy) propionic acids in organic solvents.
    Watanabe K; Koshiba T; Yasufuku Y; Miyazawa T; Ueji S
    Bioorg Chem; 2001 Apr; 29(2):65-76. PubMed ID: 11300696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioselective lipase-catalyzed ester hydrolysis: effects on rates and enantioselectivity from a variation of the ester structure.
    Bojarski J; Oxelbark J; Andersson C; Allenmark S
    Chirality; 1993; 5(3):154-8. PubMed ID: 8338725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of the configuration of a chiral, activating carrier on the enantioselectivity of entrapped lipase from Candida rugosa in cyclohexane.
    Tobis J; Tiller JC
    Biotechnol Lett; 2014 Aug; 36(8):1661-7. PubMed ID: 24682791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.