These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 23666098)

  • 1. In silico metabolic engineering of Bacillus subtilis for improved production of riboflavin, Egl-237, (R,R)-2,3-butanediol and isobutanol.
    Hao T; Han B; Ma H; Fu J; Wang H; Wang Z; Tang B; Chen T; Zhao X
    Mol Biosyst; 2013 Aug; 9(8):2034-44. PubMed ID: 23666098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational improvement of the engineered isobutanol-producing Bacillus subtilis by elementary mode analysis.
    Li S; Huang D; Li Y; Wen J; Jia X
    Microb Cell Fact; 2012 Aug; 11():101. PubMed ID: 22862776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of Bacillus subtilis for the Production of 2,3-Butanediol from Sugarcane Molasses.
    Deshmukh AN; Nipanikar-Gokhale P; Jain R
    Appl Biochem Biotechnol; 2016 May; 179(2):321-31. PubMed ID: 26825987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Bacillus subtilis for enhanced production of acetoin.
    Wang M; Fu J; Zhang X; Chen T
    Biotechnol Lett; 2012 Oct; 34(10):1877-85. PubMed ID: 22714279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADH plays the vital role for chiral pure D-(-)-2,3-butanediol production in Bacillus subtilis under limited oxygen conditions.
    Fu J; Wang Z; Chen T; Liu W; Shi T; Wang G; Tang YJ; Zhao X
    Biotechnol Bioeng; 2014 Oct; 111(10):2126-31. PubMed ID: 24788512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering design to enhance (R,R)-2,3-butanediol production from glycerol in Bacillus subtilis based on flux balance analysis.
    Vikromvarasiri N; Shirai T; Kondo A
    Microb Cell Fact; 2021 Oct; 20(1):196. PubMed ID: 34627250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of genetic modifications and fermentation conditions on 2,3-butanediol production by alkaliphilic Bacillus subtilis.
    Białkowska AM; Jędrzejczak-Krzepkowska M; Gromek E; Krysiak J; Sikora B; Kalinowska H; Kubik C; Schütt F; Turkiewicz M
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2663-76. PubMed ID: 26590588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2,3-Butanediol production from cellobiose using exogenous beta-glucosidase-expressing Bacillus subtilis.
    Tanimura K; Takashima S; Matsumoto T; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):5781-9. PubMed ID: 26830100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced production of 2,3-butanediol by engineered Bacillus subtilis.
    Biswas R; Yamaoka M; Nakayama H; Kondo T; Yoshida K; Bisaria VS; Kondo A
    Appl Microbiol Biotechnol; 2012 May; 94(3):651-8. PubMed ID: 22361854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production.
    Hu J; Lei P; Mohsin A; Liu X; Huang M; Li L; Hu J; Hang H; Zhuang Y; Guo M
    Microb Cell Fact; 2017 Sep; 16(1):150. PubMed ID: 28899391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis.
    Duan YX; Chen T; Chen X; Zhao XM
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1907-14. PubMed ID: 19779711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 13 C-metabolic flux analysis in heterologous cellulase production by Bacillus subtilis genome-reduced strain.
    Toya Y; Hirasawa T; Morimoto T; Masuda K; Kageyama Y; Ozaki K; Ogasawara N; Shimizu H
    J Biotechnol; 2014 Jun; 179():42-9. PubMed ID: 24667539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of enzymatic data in Bacillus subtilis genome-scale metabolic model improves phenotype predictions and enables in silico design of poly-γ-glutamic acid production strains.
    Massaiu I; Pasotti L; Sonnenschein N; Rama E; Cavaletti M; Magni P; Calvio C; Herrgård MJ
    Microb Cell Fact; 2019 Jan; 18(1):3. PubMed ID: 30626384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane.
    Nguyen AD; Hwang IY; Lee OK; Kim D; Kalyuzhnaya MG; Mariyana R; Hadiyati S; Kim MS; Lee EY
    Metab Eng; 2018 May; 47():323-333. PubMed ID: 29673960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotechnology of riboflavin.
    Schwechheimer SK; Park EY; Revuelta JL; Becker J; Wittmann C
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2107-19. PubMed ID: 26758294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering a metabolic pathway for isobutanol biosynthesis in Bacillus subtilis.
    Jia X; Li S; Xie S; Wen J
    Appl Biochem Biotechnol; 2012 Sep; 168(1):1-9. PubMed ID: 21537892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved 2-methyl-1-propanol production in an engineered Bacillus subtilis by constructing inducible pathways.
    Li S; Jia X; Wen J
    Biotechnol Lett; 2012 Dec; 34(12):2253-8. PubMed ID: 22941373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering.
    Ng CY; Jung MY; Lee J; Oh MK
    Microb Cell Fact; 2012 May; 11():68. PubMed ID: 22640729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model-driven redox pathway manipulation for improved isobutanol production in Bacillus subtilis complemented with experimental validation and metabolic profiling analysis.
    Qi H; Li S; Zhao S; Huang D; Xia M; Wen J
    PLoS One; 2014; 9(4):e93815. PubMed ID: 24705866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of riboflavin production in Bacillus subtilis via in vitro and in vivo metabolic engineering of pentose phosphate pathway.
    Zhang M; Zhao X; Chen X; Li M; Wang X
    Biotechnol Lett; 2021 Dec; 43(12):2209-2216. PubMed ID: 34606014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.