BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 23666209)

  • 21. Combining independent de novo assemblies to optimize leaf transcriptome of Persian walnut.
    Sadat-Hosseini M; Bakhtiarizadeh MR; Boroomand N; Tohidfar M; Vahdati K
    PLoS One; 2020; 15(4):e0232005. PubMed ID: 32343733
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selecting Superior De Novo Transcriptome Assemblies: Lessons Learned by Leveraging the Best Plant Genome.
    Honaas LA; Wafula EK; Wickett NJ; Der JP; Zhang Y; Edger PP; Altman NS; Pires JC; Leebens-Mack JH; dePamphilis CW
    PLoS One; 2016; 11(1):e0146062. PubMed ID: 26731733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined de novo and genome guided assembly and annotation of the Pinus patula juvenile shoot transcriptome.
    Visser EA; Wegrzyn JL; Steenkmap ET; Myburg AA; Naidoo S
    BMC Genomics; 2015 Dec; 16():1057. PubMed ID: 26652261
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A quantitative reference transcriptome for Nematostella vectensis early embryonic development: a pipeline for de novo assembly in emerging model systems.
    Tulin S; Aguiar D; Istrail S; Smith J
    Evodevo; 2013; 4():16. PubMed ID: 23731568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clover: a clustering-oriented de novo assembler for Illumina sequences.
    Hsieh MF; Lu CL; Tang CY
    BMC Bioinformatics; 2020 Nov; 21(1):528. PubMed ID: 33203354
    [TBL] [Abstract][Full Text] [Related]  

  • 26. De novo Transcriptome Assemblies of Rana (Lithobates) catesbeiana and Xenopus laevis Tadpole Livers for Comparative Genomics without Reference Genomes.
    Birol I; Behsaz B; Hammond SA; Kucuk E; Veldhoen N; Helbing CC
    PLoS One; 2015; 10(6):e0130720. PubMed ID: 26121473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.
    Hoang NV; Furtado A; Mason PJ; Marquardt A; Kasirajan L; Thirugnanasambandam PP; Botha FC; Henry RJ
    BMC Genomics; 2017 May; 18(1):395. PubMed ID: 28532419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparing de novo and reference-based transcriptome assembly strategies by applying them to the blood-sucking bug Rhodnius prolixus.
    Marchant A; Mougel F; Mendonça V; Quartier M; Jacquin-Joly E; da Rosa JA; Petit E; Harry M
    Insect Biochem Mol Biol; 2016 Feb; 69():25-33. PubMed ID: 26005117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accuracy of de novo assembly of DNA sequences from double-digest libraries varies substantially among software.
    LaCava MEF; Aikens EO; Megna LC; Randolph G; Hubbard C; Buerkle CA
    Mol Ecol Resour; 2020 Mar; 20(2):360-370. PubMed ID: 31665547
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Re-assembly, quality evaluation, and annotation of 678 microbial eukaryotic reference transcriptomes.
    Johnson LK; Alexander H; Brown CT
    Gigascience; 2019 Apr; 8(4):. PubMed ID: 30544207
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of de novo transcriptome assemblies from RNA-Seq data.
    Li B; Fillmore N; Bai Y; Collins M; Thomson JA; Stewart R; Dewey CN
    Genome Biol; 2014 Dec; 15(12):553. PubMed ID: 25608678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. iAssembler: a package for de novo assembly of Roche-454/Sanger transcriptome sequences.
    Zheng Y; Zhao L; Gao J; Fei Z
    BMC Bioinformatics; 2011 Nov; 12():453. PubMed ID: 22111509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Construction of a public CHO cell line transcript database using versatile bioinformatics analysis pipelines.
    Rupp O; Becker J; Brinkrolf K; Timmermann C; Borth N; Pühler A; Noll T; Goesmann A
    PLoS One; 2014; 9(1):e85568. PubMed ID: 24427317
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparing de novo transcriptome assembly tools in di- and autotetraploid non-model plant species.
    Madritsch S; Burg A; Sehr EM
    BMC Bioinformatics; 2021 Mar; 22(1):146. PubMed ID: 33752598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A memory-efficient algorithm to obtain splicing graphs and de novo expression estimates from de Bruijn graphs of RNA-Seq data.
    Sze SH; Tarone AM
    BMC Genomics; 2014; 15 Suppl 5(Suppl 5):S6. PubMed ID: 25082000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluating de Bruijn graph assemblers on 454 transcriptomic data.
    Ren X; Liu T; Dong J; Sun L; Yang J; Zhu Y; Jin Q
    PLoS One; 2012; 7(12):e51188. PubMed ID: 23236450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes.
    Ashrafi H; Hill T; Stoffel K; Kozik A; Yao J; Chin-Wo SR; Van Deynze A
    BMC Genomics; 2012 Oct; 13():571. PubMed ID: 23110314
    [TBL] [Abstract][Full Text] [Related]  

  • 38. De novo transcriptome assembly: A comprehensive cross-species comparison of short-read RNA-Seq assemblers.
    Hölzer M; Marz M
    Gigascience; 2019 May; 8(5):. PubMed ID: 31077315
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads.
    Xie Y; Wu G; Tang J; Luo R; Patterson J; Liu S; Huang W; He G; Gu S; Li S; Zhou X; Lam TW; Li Y; Xu X; Wong GK; Wang J
    Bioinformatics; 2014 Jun; 30(12):1660-6. PubMed ID: 24532719
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A pipeline for the de novo assembly of the Themira biloba (Sepsidae: Diptera) transcriptome using a multiple k-mer length approach.
    Melicher D; Torson AS; Dworkin I; Bowsher JH
    BMC Genomics; 2014 Mar; 15(1):188. PubMed ID: 24621177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.