These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2366641)

  • 1. The line shapes of the water proton resonances of red blood cells containing carbonyl hemoglobin, deoxyhemoglobin, and methemoglobin: implications for the interpretation of proton MRI at fields of 1.5 T and below.
    Matwiyoff NA; Gasparovic C; Mazurchuk R; Matwiyoff G
    Magn Reson Imaging; 1990; 8(3):295-301. PubMed ID: 2366641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR relaxation times of blood: dependence on field strength, oxidation state, and cell integrity.
    Gomori JM; Grossman RI; Yu-Ip C; Asakura T
    J Comput Assist Tomogr; 1987; 11(4):684-90. PubMed ID: 3597895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The magnetic properties and water dynamics of the red blood cell: a study by proton-NMR lineshape analysis.
    Gasparovic C; Matwiyoff NA
    Magn Reson Med; 1992 Aug; 26(2):274-99. PubMed ID: 1325024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of hemolysis and clotting on proton relaxation times of blood.
    Nummi P; Alanen A; Näntö V; Kormano M
    Acta Radiol Diagn (Stockh); 1986; 27(2):225-30. PubMed ID: 2424275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic resonance imaging of stationary blood: a review.
    Brooks RA; Di Chiro G
    Med Phys; 1987; 14(6):903-13. PubMed ID: 3696078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transverse water relaxation in whole blood and erythrocytes at 3T, 7T, 9.4T, 11.7T and 16.4T; determination of intracellular hemoglobin and extracellular albumin relaxivities.
    Grgac K; Li W; Huang A; Qin Q; van Zijl PC
    Magn Reson Imaging; 2017 May; 38():234-249. PubMed ID: 27993533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative theory for the transverse relaxation time of blood water.
    Li W; van Zijl PCM
    NMR Biomed; 2020 May; 33(5):e4207. PubMed ID: 32022362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MR imaging of various oxidation states of intracellular and extracellular hemoglobin.
    Janick PA; Hackney DB; Grossman RI; Asakura T
    AJNR Am J Neuroradiol; 1991; 12(5):891-7. PubMed ID: 1950918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A proton nuclear magnetic resonance study of the quaternary structure of human homoglobins in water.
    Fung LW; Ho C
    Biochemistry; 1975 Jun; 14(11):2526-35. PubMed ID: 1138870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Cerebral hemorrhage: initial experiences with magnetic resonance imaging].
    Foresti M; Guidali A; Susanna P
    Radiol Med; 1990; 79(1-2):18-28. PubMed ID: 2315522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR relaxometric investigation on human methemoglobin and fluoromethemoglobin. An improved quantitative in vitro assay of human methemoglobin.
    Aime S; Fasano M; Paoletti S; Arnelli A; Ascenzi P
    Magn Reson Med; 1995 Jun; 33(6):827-31. PubMed ID: 7651120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the origin of paramagnetic inhomogeneity effects in blood.
    Brooks RA; Brunetti A; Alger JR; Di Chiro G
    Magn Reson Med; 1989 Nov; 12(2):241-8. PubMed ID: 2615630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton longitudinal relaxation investigation of histidyl residues in human normal adult hemoglobin.
    Russu IM; Ho C
    Biophys J; 1982 Aug; 39(2):203-10. PubMed ID: 6288133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton transverse nuclear magnetic relaxation in oxidized blood: a numerical approach.
    Gillis P; Petö S; Moiny F; Mispelter J; Cuenod CA
    Magn Reson Med; 1995 Jan; 33(1):93-100. PubMed ID: 7891542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR water-proton spin-lattice relaxation time of human red blood cells and red blood cell suspensions.
    Sullivan SG; Stern A; Rosenthal JS; Minkoff LA; Winston A
    FEBS Lett; 1988 Jul; 234(2):349-52. PubMed ID: 3391279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quaternary structure, hydration, and self-association of hemoglobin. A proton magnetic relaxation study.
    Brnjas-Kraljević J; Pifat G; Maricić S
    Physiol Chem Phys; 1979; 11(4):371-6. PubMed ID: 538101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical-exchange and paramagnetic T2 relaxation agents for water suppression in spin-echo proton nuclear magnetic resonance spectroscopy of biological fluids.
    Connor S; Nicholson JK; Everett JR
    Anal Chem; 1987 Dec; 59(24):2885-91. PubMed ID: 3434814
    [No Abstract]   [Full Text] [Related]  

  • 18. On the origin of paramagnetic inhomogeneity effects in whole blood.
    Matwiyoff NA; Gasparovic C; Mazurchuk R; Matwiyoff G
    Magn Reson Med; 1991 Jul; 20(1):144-50. PubMed ID: 1658536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Spectral properties of hemoglobin in different parts of the erythrocyte and the distribution of methemoglobin in it after a partial methemoglobin formation].
    Gorn LE
    Tsitologiia; 1967 Mar; 9(3):357-60. PubMed ID: 6076526
    [No Abstract]   [Full Text] [Related]  

  • 20. MR appearance of hemorrhage in the brain.
    Bradley WG
    Radiology; 1993 Oct; 189(1):15-26. PubMed ID: 8372185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.