These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 23666444)

  • 1. Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives.
    Furuya T; Kino K
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1145-54. PubMed ID: 23666444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of 4-hydroxyphenylacetate 3-hydroxylase (HpaB) of Escherichia coli as a reduced flavin adenine dinucleotide-utilizing monooxygenase.
    Xun L; Sandvik ER
    Appl Environ Microbiol; 2000 Feb; 66(2):481-6. PubMed ID: 10653707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformation of cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid by plant cell cultures of Eucalyptus perriniana.
    Katsuragi H; Shimoda K; Kubota N; Nakajima N; Hamada H; Hamada H
    Biosci Biotechnol Biochem; 2010; 74(9):1920-4. PubMed ID: 20834169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotechnological production of caffeic acid by bacterial cytochrome P450 CYP199A2.
    Furuya T; Arai Y; Kino K
    Appl Environ Microbiol; 2012 Sep; 78(17):6087-94. PubMed ID: 22729547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocatalytic synthesis of 3,4,5,3',5'-pentahydroxy-trans-stilbene from piceatannol by two-component flavin-dependent monooxygenase HpaBC.
    Furuya T; Sai M; Kino K
    Biosci Biotechnol Biochem; 2016; 80(1):193-8. PubMed ID: 26287658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenolic metabolism in the hornwort Anthoceros agrestis: 4-coumarate CoA ligase and 4-hydroxybenzoate CoA ligase.
    Wohl J; Petersen M
    Plant Cell Rep; 2020 Sep; 39(9):1129-1141. PubMed ID: 32405654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization of 4-hydroxyphenylacetate 3-hydroxylase of Escherichia coli. A two-protein component enzyme.
    Prieto MA; Garcia JL
    J Biol Chem; 1994 Sep; 269(36):22823-9. PubMed ID: 8077235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain.
    Kang SY; Choi O; Lee JK; Hwang BY; Uhm TB; Hong YS
    Microb Cell Fact; 2012 Dec; 11():153. PubMed ID: 23206756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient monooxygenase-catalyzed piceatannol production: Application of cyclodextrins for reducing product inhibition.
    Furuya T; Sai M; Kino K
    J Biosci Bioeng; 2018 Oct; 126(4):478-481. PubMed ID: 29764766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of naringenin and p-coumaric acid hydroxylation using the native E. coli hydroxylase complex, HpaBC.
    Jones JA; Collins SM; Vernacchio VR; Lachance DM; Koffas MA
    Biotechnol Prog; 2016; 32(1):21-5. PubMed ID: 26488898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grape skins (Vitis vinifera L.) catalyze the in vitro enzymatic hydroxylation of p-coumaric acid to caffeic acid.
    Arnous A; Meyer AS
    Biotechnol Lett; 2009 Dec; 31(12):1953-60. PubMed ID: 19696970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain.
    Huang Q; Lin Y; Yan Y
    Biotechnol Bioeng; 2013 Dec; 110(12):3188-96. PubMed ID: 23801069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioconversion of cinnamic acid derivatives by Schizophyllum commune.
    Nimura Y; Tsujiyama S; Ueno M
    J Gen Appl Microbiol; 2010 Oct; 56(5):381-7. PubMed ID: 21099134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of 4-hydroxyphenylacetate 3-hydroxylase derived from Pseudomonas aeruginosa for the ortho-hydroxylation of ferulic acid.
    Sun P; Zheng P; Chen P; Wu D; Xu S
    Int J Biol Macromol; 2024 Apr; 264(Pt 1):130545. PubMed ID: 38431000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic synthesis of cinnamic acid derivatives.
    Lee GS; Widjaja A; Ju YH
    Biotechnol Lett; 2006 Apr; 28(8):581-5. PubMed ID: 16614896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caffeic acid production from glucose using metabolically engineered Escherichia coli.
    Sakae K; Nonaka D; Kishida M; Hirata Y; Fujiwara R; Kondo A; Noda S; Tanaka T
    Enzyme Microb Technol; 2023 Mar; 164():110193. PubMed ID: 36621069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of cinnamic and p-hydroxycinnamic acid from sugar mixtures with engineered Escherichia coli.
    Vargas-Tah A; Martínez LM; Hernández-Chávez G; Rocha M; Martínez A; Bolívar F; Gosset G
    Microb Cell Fact; 2015 Jan; 14():6. PubMed ID: 25592545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red clover coumarate 3'-hydroxylase (CYP98A44) is capable of hydroxylating p-coumaroyl-shikimate but not p-coumaroyl-malate: implications for the biosynthesis of phaselic acid.
    Sullivan ML; Zarnowski R
    Planta; 2010 Jan; 231(2):319-28. PubMed ID: 19921248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential production of meta hydroxylated phenylpropanoids in sweet basil peltate glandular trichomes and leaves is controlled by the activities of specific acyltransferases and hydroxylases.
    Gang DR; Beuerle T; Ullmann P; Werck-Reichhart D; Pichersky E
    Plant Physiol; 2002 Nov; 130(3):1536-44. PubMed ID: 12428018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-production of caffeic acid and p-hydroxybenzoic acid from p-coumaric acid by Streptomyces caeruleus MTCC 6638.
    Sachan A; Ghosh S; Sen SK; Mitra A
    Appl Microbiol Biotechnol; 2006 Aug; 71(5):720-7. PubMed ID: 16292647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.