These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 23666725)
1. Interpretation of tandem mass spectra of posttranslationally modified peptides. Bunkenborg J; Matthiesen R Methods Mol Biol; 2013; 1007():139-71. PubMed ID: 23666725 [TBL] [Abstract][Full Text] [Related]
2. Interpretation of collision-induced fragmentation tandem mass spectra of posttranslationally modified peptides. Bunkenborg J; Matthiesen R Methods Mol Biol; 2007; 367():169-94. PubMed ID: 17185776 [TBL] [Abstract][Full Text] [Related]
3. Interpretation of Tandem Mass Spectra of Posttranslationally Modified Peptides. Bunkenborg J; Matthiesen R Methods Mol Biol; 2020; 2051():199-230. PubMed ID: 31552630 [TBL] [Abstract][Full Text] [Related]
4. Protein identification from tandem mass spectra by database searching. Edwards NJ Methods Mol Biol; 2011; 694():119-38. PubMed ID: 21082432 [TBL] [Abstract][Full Text] [Related]
5. InsPecT: identification of posttranslationally modified peptides from tandem mass spectra. Tanner S; Shu H; Frank A; Wang LC; Zandi E; Mumby M; Pevzner PA; Bafna V Anal Chem; 2005 Jul; 77(14):4626-39. PubMed ID: 16013882 [TBL] [Abstract][Full Text] [Related]
6. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins. Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983 [TBL] [Abstract][Full Text] [Related]
7. Protein identification by tandem mass spectrometry and sequence database searching. Nesvizhskii AI Methods Mol Biol; 2007; 367():87-119. PubMed ID: 17185772 [TBL] [Abstract][Full Text] [Related]
8. Charger: combination of signal processing and statistical learning algorithms for precursor charge-state determination from electron-transfer dissociation spectra. Sadygov RG; Hao Z; Huhmer AF Anal Chem; 2008 Jan; 80(2):376-86. PubMed ID: 18081262 [TBL] [Abstract][Full Text] [Related]
9. Integrated approach for manual evaluation of peptides identified by searching protein sequence databases with tandem mass spectra. Chen Y; Kwon SW; Kim SC; Zhao Y J Proteome Res; 2005; 4(3):998-1005. PubMed ID: 15952748 [TBL] [Abstract][Full Text] [Related]
10. An algorithm for identifying multiply modified endogenous proteins using both full-scan and high-resolution tandem mass spectrometric data. Mazur MT; Fyhr R Rapid Commun Mass Spectrom; 2011 Dec; 25(23):3617-26. PubMed ID: 22095511 [TBL] [Abstract][Full Text] [Related]
11. Deconvolution of mixture spectra and increased throughput of peptide identification by utilization of intensified complementary ions formed in tandem mass spectrometry. Kryuchkov F; Verano-Braga T; Hansen TA; Sprenger RR; Kjeldsen F J Proteome Res; 2013 Jul; 12(7):3362-71. PubMed ID: 23725413 [TBL] [Abstract][Full Text] [Related]
12. Protein Identification from Tandem Mass Spectra by Database Searching. Edwards NJ Methods Mol Biol; 2017; 1558():357-380. PubMed ID: 28150247 [TBL] [Abstract][Full Text] [Related]
13. A spectral clustering approach to MS/MS identification of post-translational modifications. Falkner JA; Falkner JW; Yocum AK; Andrews PC J Proteome Res; 2008 Nov; 7(11):4614-22. PubMed ID: 18800783 [TBL] [Abstract][Full Text] [Related]
14. A hybrid method for peptide identification using integer linear optimization, local database search, and quadrupole time-of-flight or OrbiTrap tandem mass spectrometry. DiMaggio PA; Floudas CA; Lu B; Yates JR J Proteome Res; 2008 Apr; 7(4):1584-93. PubMed ID: 18324765 [TBL] [Abstract][Full Text] [Related]
15. Validation of endogenous peptide identifications using a database of tandem mass spectra. Fälth M; Svensson M; Nilsson A; Sköld K; Fenyö D; Andren PE J Proteome Res; 2008 Jul; 7(7):3049-53. PubMed ID: 18549260 [TBL] [Abstract][Full Text] [Related]
16. Statistical models for protein validation using tandem mass spectral data and protein amino acid sequence databases. Sadygov RG; Liu H; Yates JR Anal Chem; 2004 Mar; 76(6):1664-71. PubMed ID: 15018565 [TBL] [Abstract][Full Text] [Related]
17. A support for the identification of non-tryptic peptides based on low resolution tandem and sequential mass spectrometry data: the INSPIRE software. Losito I; Mavelli F; Loiotile AD; Palmisano F Anal Chim Acta; 2012 Mar; 718():70-7. PubMed ID: 22305900 [TBL] [Abstract][Full Text] [Related]
18. Detection and identification of heme c-modified peptides by histidine affinity chromatography, high-performance liquid chromatography-mass spectrometry, and database searching. Merkley ED; Anderson BJ; Park J; Belchik SM; Shi L; Monroe ME; Smith RD; Lipton MS J Proteome Res; 2012 Dec; 11(12):6147-58. PubMed ID: 23082897 [TBL] [Abstract][Full Text] [Related]
19. An accurate and efficient algorithm for Peptide and ptm identification by tandem mass spectrometry. Ning K; Ng HK; Leong HW Genome Inform; 2007; 19():119-30. PubMed ID: 18546510 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of several MS/MS search algorithms for analysis of spectra derived from electron transfer dissociation experiments. Kandasamy K; Pandey A; Molina H Anal Chem; 2009 Sep; 81(17):7170-80. PubMed ID: 19639959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]