These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23666889)

  • 1. Variation of microsporogenesis in monocots producing monosulcate pollen grains.
    Toghranegar Z; Nadot S; Albert B
    Ann Bot; 2013 Jul; 112(1):135-9. PubMed ID: 23666889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Links between early pollen development and aperture pattern in monocots.
    Nadot S; Forchioni A; Penet L; Sannier J; Ressayre A
    Protoplasma; 2006 Aug; 228(1-3):55-64. PubMed ID: 16937055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of tetrad shape and intersporal callose wall formation on pollen aperture pattern ontogeny in two eudicot species.
    Albert B; Nadot S; Dreyer L; Ressayre A
    Ann Bot; 2010 Oct; 106(4):557-64. PubMed ID: 20685726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between pollen aperture pattern and callose deposition in late tetrad stage in three species producing atypical pollen grains.
    Albert B; Ressayre A; Nadot S
    Am J Bot; 2011 Feb; 98(2):189-96. PubMed ID: 21613108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release of developmental constraints on tetrad shape is confirmed in inaperturate pollen of Potamogeton.
    Nunes EL; Bona C; Moço MC; Coan AI
    Ann Bot; 2009 Oct; 104(5):1011-5. PubMed ID: 19567417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple developmental pathways leading to a single morph: monosulcate pollen (examples from the Asparagales).
    Penet L; Nadot S; Ressayre A; Forchioni A; Dreyer L; Gouyon PH
    Ann Bot; 2005 Jan; 95(2):331-43. PubMed ID: 15567807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary stasis in Euphorbiaceae pollen: selection and constraints.
    Matamoro-Vidal A; Furness CA; Gouyon PH; Wurdack KJ; Albert B
    J Evol Biol; 2012 Jun; 25(6):1077-96. PubMed ID: 22462524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary stasis in pollen morphogenesis due to natural selection.
    Matamoro-Vidal A; Prieu C; Furness CA; Albert B; Gouyon PH
    New Phytol; 2016 Jan; 209(1):376-94. PubMed ID: 26248868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Arabidopsis CALLOSE DEFECTIVE MICROSPORE1 gene is required for male fertility through regulating callose metabolism during microsporogenesis.
    Lu P; Chai M; Yang J; Ning G; Wang G; Ma H
    Plant Physiol; 2014 Apr; 164(4):1893-904. PubMed ID: 24567187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Successive microsporogenesis affects pollen aperture pattern in the tam mutant of Arabidopsis thaliana.
    Albert B; Raquin C; Prigent M; Nadot S; Brisset F; Yang M; Ressayre A
    Ann Bot; 2011 Jun; 107(8):1421-6. PubMed ID: 21489970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precocious pollen germination in Arabidopsis plants with altered callose deposition during microsporogenesis.
    Xie B; Wang X; Hong Z
    Planta; 2010 Mar; 231(4):809-23. PubMed ID: 20039178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and function of a new pollen aperture pattern in angiosperms: The proximal sulcus of Tillandsia leiboldiana (Bromeliaceae).
    Albert B; Matamoro-Vidal A; Raquin C; Nadot S
    Am J Bot; 2010 Feb; 97(2):365-8. PubMed ID: 21622396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructural aspects of pollen ontogeny in an endangered plant species, Pancratium maritimum L. (Amaryllidaceae).
    Tütüncü Konyar S
    Protoplasma; 2017 Mar; 254(2):881-900. PubMed ID: 27460470
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Wu H; Hu M; Yang M
    Plant Signal Behav; 2021 Jun; 16(6):1913308. PubMed ID: 33853501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructure of microsporogenesis and microgametogenesis in Brachypodium distachyon.
    Sharma A; Singh MB; Bhalla PL
    Protoplasma; 2015 Nov; 252(6):1575-86. PubMed ID: 25772681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ontogeny of the pollinium in Hoya carnosa provides new insights into microsporogenesis.
    Kuang YF; Jia RZ; Balslev H; Liao JP
    Plant Reprod; 2023 Jun; 36(2):193-211. PubMed ID: 36763160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GLUCAN SYNTHASE-LIKE 5 (GSL5) plays an essential role in male fertility by regulating callose metabolism during microsporogenesis in rice.
    Shi X; Sun X; Zhang Z; Feng D; Zhang Q; Han L; Wu J; Lu T
    Plant Cell Physiol; 2015 Mar; 56(3):497-509. PubMed ID: 25520407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Studies on the megasporogenesis and microsporogenesis and the development of their female and male gametophyte in Magnolia biloba].
    Wang LL; Hu JQ; Pang JL; Xiang TH
    Shi Yan Sheng Wu Xue Bao; 2005 Dec; 38(6):490-500. PubMed ID: 16416966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of a unique structure during microsporogenesis in Tinantia anomala (Commelinaceae) anthers.
    Winiarczyk K; Gębura J
    Protoplasma; 2017 Mar; 254(2):785-790. PubMed ID: 27311979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Arabidopsis Exine Formation Defect (EFD) gene is required for primexine patterning and is critical for pollen fertility.
    Hu J; Wang Z; Zhang L; Sun MX
    New Phytol; 2014 Jul; 203(1):140-54. PubMed ID: 24697753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.