BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 23666910)

  • 1. Magnetic-directed patterning of cell spheroids.
    Whatley BR; Li X; Zhang N; Wen X
    J Biomed Mater Res A; 2014 May; 102(5):1537-47. PubMed ID: 23666910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput generation of spheroids using magnetic nanoparticles for three-dimensional cell culture.
    Kim JA; Choi JH; Kim M; Rhee WJ; Son B; Jung HK; Park TH
    Biomaterials; 2013 Nov; 34(34):8555-63. PubMed ID: 23937911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic reconstruction of three-dimensional tissues from multicellular spheroids.
    Lin RZ; Chu WC; Chiang CC; Lai CH; Chang HY
    Tissue Eng Part C Methods; 2008 Sep; 14(3):197-205. PubMed ID: 18781835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies.
    Kingsley DM; Roberge CL; Rudkouskaya A; Faulkner DE; Barroso M; Intes X; Corr DT
    Acta Biomater; 2019 Sep; 95():357-370. PubMed ID: 30776506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of a three-dimensional multicellular assembly using magnetic patterning.
    Frasca G; Gazeau F; Wilhelm C
    Langmuir; 2009 Feb; 25(4):2348-54. PubMed ID: 19166275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of functionalized superparamagnetic iron oxide nanoparticles with brain structures.
    Cengelli F; Maysinger D; Tschudi-Monnet F; Montet X; Corot C; Petri-Fink A; Hofmann H; Juillerat-Jeanneret L
    J Pharmacol Exp Ther; 2006 Jul; 318(1):108-16. PubMed ID: 16608917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three dimensional spheroid cell culture for nanoparticle safety testing.
    Sambale F; Lavrentieva A; Stahl F; Blume C; Stiesch M; Kasper C; Bahnemann D; Scheper T
    J Biotechnol; 2015 Jul; 205():120-9. PubMed ID: 25595712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of in vitro 3D mineralized tissue by fusion of composite spheroids incorporating biomineral-coated nanofibers and human adipose-derived stem cells.
    Ahmad T; Shin HJ; Lee J; Shin YM; Perikamana SKM; Park SY; Jung HS; Shin H
    Acta Biomater; 2018 Jul; 74():464-477. PubMed ID: 29803004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulation of cellular spheroid composition and the effects on vascular tissue fusion.
    Olsen TR; Mattix B; Casco M; Herbst A; Williams C; Tarasidis A; Simionescu D; Visconti RP; Alexis F
    Acta Biomater; 2015 Feb; 13():188-98. PubMed ID: 25463485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation and manipulation of magnetic multicellular spheroids.
    Ho VH; Müller KH; Barcza A; Chen R; Slater NK
    Biomaterials; 2010 Apr; 31(11):3095-102. PubMed ID: 20045553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multicellular spheroid formation and extraction chip using removable cell trapping barriers.
    Jin HJ; Cho YH; Gu JM; Kim J; Oh YS
    Lab Chip; 2011 Jan; 11(1):115-9. PubMed ID: 21038070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioprinted nanoparticles for tissue engineering applications.
    Buyukhatipoglu K; Chang R; Sun W; Clyne AM
    Tissue Eng Part C Methods; 2010 Aug; 16(4):631-42. PubMed ID: 19769526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of enzyme prodrug gene therapy combinations in coated spheroids and vascular networks in vitro.
    Hunt MA; Li D; Hay MP; Currie MJ; Robinson BA; Patterson AV; Dachs GU
    J Gene Med; 2012 Jan; 14(1):62-74. PubMed ID: 22147660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shell matters: Magnetic targeting of SPIONs and in vitro effects on endothelial and monocytic cell function.
    Matuszak J; Dörfler P; Zaloga J; Unterweger H; Lyer S; Dietel B; Alexiou C; Cicha I
    Clin Hemorheol Microcirc; 2015; 61(2):259-77. PubMed ID: 26410877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a magnetic 3D spheroid platform with potential application for high-throughput drug screening.
    Guo WM; Loh XJ; Tan EY; Loo JS; Ho VH
    Mol Pharm; 2014 Jul; 11(7):2182-9. PubMed ID: 24842574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of core-shell spheroids as building blocks for engineering 3D complex vascularized tissue.
    Kim EM; Lee YB; Kim SJ; Park J; Lee J; Kim SW; Park H; Shin H
    Acta Biomater; 2019 Dec; 100():158-172. PubMed ID: 31542503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogel thin film with swelling-induced wrinkling patterns for high-throughput generation of multicellular spheroids.
    Zhao Z; Gu J; Zhao Y; Guan Y; Zhu XX; Zhang Y
    Biomacromolecules; 2014 Sep; 15(9):3306-12. PubMed ID: 25072634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalable robotic biofabrication of tissue spheroids.
    Mehesz AN; Brown J; Hajdu Z; Beaver W; da Silva JV; Visconti RP; Markwald RR; Mironov V
    Biofabrication; 2011 Jun; 3(2):025002. PubMed ID: 21562365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic flattening of stem-cell spheroids indicates a size-dependent elastocapillary transition.
    Mazuel F; Reffay M; Du V; Bacri JC; Rieu JP; Wilhelm C
    Phys Rev Lett; 2015 Mar; 114(9):098105. PubMed ID: 25793856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the Three-Dimensional Structure of Adherent Gingival Fibroblasts and Spheroids via a Fibrous Protein-Based Hydrogel Cover.
    Kaufman G; Nunes L; Eftimiades A; Tutak W
    Cells Tissues Organs; 2016; 202(5-6):343-354. PubMed ID: 27578009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.