BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23666913)

  • 1. Passive films on metallic biomaterials under simulated physiological conditions.
    Pound BG
    J Biomed Mater Res A; 2014 May; 102(5):1595-604. PubMed ID: 23666913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications.
    Oliveira NT; Guastaldi AC
    Acta Biomater; 2009 Jan; 5(1):399-405. PubMed ID: 18707926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of carbides and microstructure of CoCrMo alloys on their metallic dissolution resistance.
    Valero-Vidal C; Casabán-Julián L; Herraiz-Cardona I; Igual-Muñoz A
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4667-76. PubMed ID: 24094174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro corrosion and biocompatibility screening of sputtered Ti40Cu36Pd14Zr10 thin film metallic glasses on steels.
    Subramanian B
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():48-56. PubMed ID: 25492171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical and surface analyses of nanostructured Ti-24Nb-4Zr-8Sn alloys in simulated body solution.
    Li J; Li SJ; Hao YL; Huang HH; Bai Y; Hao YQ; Guo Z; Xue JQ; Yang R
    Acta Biomater; 2014 Jun; 10(6):2866-75. PubMed ID: 24583159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative corrosion study of Ti-Ta alloys for dental applications.
    Mareci D; Chelariu R; Gordin DM; Ungureanu G; Gloriant T
    Acta Biomater; 2009 Nov; 5(9):3625-39. PubMed ID: 19508903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrosion behavior of biomedical Ti-24Nb-4Zr-8Sn alloy in different simulated body solutions.
    Bai Y; Hao YL; Li SJ; Hao YQ; Yang R; Prima F
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2159-67. PubMed ID: 23498244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of overall and local electrochemical responses of oxide films grown on CoCr alloy under biological environments.
    Diaz I; Martinez-Lerma JF; Montoya R; Llorente I; Escudero ML; García-Alonso MC
    Bioelectrochemistry; 2017 Jun; 115():1-10. PubMed ID: 28126645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of SMAT-induced grain refinement and dislocations on the corrosion behavior of Ti-25Nb-3Mo-3Zr-2Sn alloy.
    Huang R; Han Y
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2353-9. PubMed ID: 23498269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of biocompatibility of 316LVM stainless steel by cyclic potentiodynamic passivation.
    Shahryari A; Omanovic S; Szpunar JA
    J Biomed Mater Res A; 2009 Jun; 89(4):1049-62. PubMed ID: 18478556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical behavior of cobalt-chromium alloys in a simulated physiological solution.
    Pound BG
    J Biomed Mater Res A; 2010 Jul; 94(1):93-102. PubMed ID: 20128010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Corrosion property and oxide film of dental casting alloys before and after porcelain firing].
    Ma Q; Wu FM
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2011 Mar; 46(3):172-6. PubMed ID: 21575441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.
    Talha M; Behera CK; Sinha OP
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3563-75. PubMed ID: 23910251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic applications through changes in the surface oxide layer by nanocrystalline surface modification.
    Bahl S; Shreyas P; Trishul MA; Suwas S; Chatterjee K
    Nanoscale; 2015 May; 7(17):7704-16. PubMed ID: 25833718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface characteristics and protein adsorption on combinatorial binary Ti-M (Cr, Al, Ni) and Al-M (Ta, Zr) library films.
    Bai Z; Filiaggi MJ; Sanderson RJ; Lohstreter LB; McArthur MA; Dahn JR
    J Biomed Mater Res A; 2010 Feb; 92(2):521-32. PubMed ID: 19235218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures.
    Tang YC; Katsuma S; Fujimoto S; Hiromoto S
    Acta Biomater; 2006 Nov; 2(6):709-15. PubMed ID: 16935040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of pH Value of a Simulated Physiological Solution on the Corrosion Resistance of Orthopaedic Alloys.
    Kovačević N; Pihlar B; Selih VS; Milošev I
    Acta Chim Slov; 2012 Mar; 59(1):144-55. PubMed ID: 24061184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.
    Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM
    J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation.
    Antunes RA; de Oliveira MC
    Acta Biomater; 2012 Mar; 8(3):937-62. PubMed ID: 21951920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of protein adsorption in the bio corrosion of metallic implants - A review.
    Talha M; Ma Y; Kumar P; Lin Y; Singh A
    Colloids Surf B Biointerfaces; 2019 Apr; 176():494-506. PubMed ID: 30690385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.