These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 23667465)
21. The differential expression of soybean [Glycine max (L.) Merrill] WRKY genes in response to water deficit. Dias LP; de Oliveira-Busatto LA; Bodanese-Zanettini MH Plant Physiol Biochem; 2016 Oct; 107():288-300. PubMed ID: 27343875 [TBL] [Abstract][Full Text] [Related]
22. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. Zhang G; Chen M; Li L; Xu Z; Chen X; Guo J; Ma Y J Exp Bot; 2009; 60(13):3781-96. PubMed ID: 19602544 [TBL] [Abstract][Full Text] [Related]
23. Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in foxtail millet (Setaria italica L.). Lata C; Mishra AK; Muthamilarasan M; Bonthala VS; Khan Y; Prasad M PLoS One; 2014; 9(11):e113092. PubMed ID: 25409524 [TBL] [Abstract][Full Text] [Related]
24. Genome-wide characterization of the aldehyde dehydrogenase gene superfamily in soybean and its potential role in drought stress response. Wang W; Jiang W; Liu J; Li Y; Gai J; Li Y BMC Genomics; 2017 Jul; 18(1):518. PubMed ID: 28687067 [TBL] [Abstract][Full Text] [Related]
25. Dynamic transcriptome analysis reveals AP2/ERF transcription factors responsible for cold stress in rapeseed (Brassica napus L.). Du C; Hu K; Xian S; Liu C; Fan J; Tu J; Fu T Mol Genet Genomics; 2016 Jun; 291(3):1053-67. PubMed ID: 26728151 [TBL] [Abstract][Full Text] [Related]
26. Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Zhai Y; Wang Y; Li Y; Lei T; Yan F; Su L; Li X; Zhao Y; Sun X; Li J; Wang Q Gene; 2013 Jan; 513(1):174-83. PubMed ID: 23111158 [TBL] [Abstract][Full Text] [Related]
27. Functional analysis of BpDREB2 gene involved in salt and drought response from a woody plant Broussonetia papyrifera. Sun J; Peng X; Fan W; Tang M; Liu J; Shen S Gene; 2014 Feb; 535(2):140-9. PubMed ID: 24315817 [TBL] [Abstract][Full Text] [Related]
29. Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis. Han X; Tang S; An Y; Zheng DC; Xia XL; Yin WL J Exp Bot; 2013 Nov; 64(14):4589-601. PubMed ID: 24006421 [TBL] [Abstract][Full Text] [Related]
30. Genome-Wide Identification of Soybean U-Box E3 Ubiquitin Ligases and Roles of GmPUB8 in Negative Regulation of Drought Stress Response in Arabidopsis. Wang N; Liu Y; Cong Y; Wang T; Zhong X; Yang S; Li Y; Gai J Plant Cell Physiol; 2016 Jun; 57(6):1189-209. PubMed ID: 27057003 [TBL] [Abstract][Full Text] [Related]
31. Drought Tolerance Conferred in Soybean (Glycine max. L) by GmMYB84, a Novel R2R3-MYB Transcription Factor. Wang N; Zhang W; Qin M; Li S; Qiao M; Liu Z; Xiang F Plant Cell Physiol; 2017 Oct; 58(10):1764-1776. PubMed ID: 29016915 [TBL] [Abstract][Full Text] [Related]
32. The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control. Dong CJ; Liu JY BMC Plant Biol; 2010 Mar; 10():47. PubMed ID: 20230648 [TBL] [Abstract][Full Text] [Related]
33. Complex regulation by Apetala2 domain-containing transcription factors revealed through analysis of the stress-responsive TdCor410b promoter from durum wheat. Eini O; Yang N; Pyvovarenko T; Pillman K; Bazanova N; Tikhomirov N; Eliby S; Shirley N; Sivasankar S; Tingey S; Langridge P; Hrmova M; Lopato S PLoS One; 2013; 8(3):e58713. PubMed ID: 23527011 [TBL] [Abstract][Full Text] [Related]
34. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Zhou QY; Tian AG; Zou HF; Xie ZM; Lei G; Huang J; Wang CM; Wang HW; Zhang JS; Chen SY Plant Biotechnol J; 2008 Jun; 6(5):486-503. PubMed ID: 18384508 [TBL] [Abstract][Full Text] [Related]
35. Isolation and characterization of a buffalograss (Buchloe dactyloides) dehydration responsive element binding transcription factor, BdDREB2. Zhang P; Yang P; Zhang Z; Han B; Wang W; Wang Y; Cao Y; Hu T Gene; 2014 Feb; 536(1):123-8. PubMed ID: 24333268 [TBL] [Abstract][Full Text] [Related]
36. The Soybean Yang Y; Yu TF; Ma J; Chen J; Zhou YB; Chen M; Ma YZ; Wei WL; Xu ZS Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31968543 [TBL] [Abstract][Full Text] [Related]
37. Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance. Arraes FB; Beneventi MA; Lisei de Sa ME; Paixao JF; Albuquerque EV; Marin SR; Purgatto E; Nepomuceno AL; Grossi-de-Sa MF BMC Plant Biol; 2015 Sep; 15():213. PubMed ID: 26335593 [TBL] [Abstract][Full Text] [Related]
38. Physiological approach to decipher the drought tolerance of a soybean genotype from Brazilian savana. Mesquita RO; Coutinho FS; Vital CE; Nepomuceno AL; Rhys Williams TC; Josué de Oliveira Ramos H; Loureiro ME Plant Physiol Biochem; 2020 Jun; 151():132-143. PubMed ID: 32220786 [TBL] [Abstract][Full Text] [Related]
39. Molecular, anatomical and physiological properties of a genetically modified soybean line transformed with rd29A:AtDREB1A for the improvement of drought tolerance. Polizel AM; Medri ME; Nakashima K; Yamanaka N; Farias JR; de Oliveira MC; Marin SR; Abdelnoor RV; Marcelino-Guimarães FC; Fuganti R; Rodrigues FA; Stolf-Moreira R; Beneventi MA; Rolla AA; Neumaier N; Yamaguchi-Shinozaki K; Carvalho JF; Nepomuceno AL Genet Mol Res; 2011 Oct; 10(4):3641-56. PubMed ID: 22033903 [TBL] [Abstract][Full Text] [Related]
40. Gene expression in two contrasting hybrid clones of Eucalyptus camaldulensis x Eucalyptus urophylla grown under water deficit conditions. Martins GS; Freitas NC; Máximo WPF; Paiva LV J Plant Physiol; 2018 Oct; 229():122-131. PubMed ID: 30071503 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]