These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 23667491)
1. Characterizing the crucial components of iron homeostasis in the maize mutants ys1 and ys3. Nozoye T; Nakanishi H; Nishizawa NK PLoS One; 2013; 8(5):e62567. PubMed ID: 23667491 [TBL] [Abstract][Full Text] [Related]
2. Transcriptomic analyses of maize ys1 and ys3 mutants reveal maize iron homeostasis. Nozoye T; Nakanishi H; Nishizawa NK Genom Data; 2015 Sep; 5():97-9. PubMed ID: 26484234 [TBL] [Abstract][Full Text] [Related]
3. Yellow stripe1. Expanded roles for the maize iron-phytosiderophore transporter. Roberts LA; Pierson AJ; Panaviene Z; Walker EL Plant Physiol; 2004 May; 135(1):112-20. PubMed ID: 15107503 [TBL] [Abstract][Full Text] [Related]
4. Molecular evidence for phytosiderophore-induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil. Xiong H; Kakei Y; Kobayashi T; Guo X; Nakazono M; Takahashi H; Nakanishi H; Shen H; Zhang F; Nishizawa NK; Zuo Y Plant Cell Environ; 2013 Oct; 36(10):1888-902. PubMed ID: 23496756 [TBL] [Abstract][Full Text] [Related]
5. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Curie C; Panaviene Z; Loulergue C; Dellaporta SL; Briat JF; Walker EL Nature; 2001 Jan; 409(6818):346-9. PubMed ID: 11201743 [TBL] [Abstract][Full Text] [Related]
6. Further characterization of ferric-phytosiderophore transporters ZmYS1 and HvYS1 in maize and barley. Ueno D; Yamaji N; Ma JF J Exp Bot; 2009; 60(12):3513-20. PubMed ID: 19549626 [TBL] [Abstract][Full Text] [Related]
7. Analysis of Yellow Striped Mutants of Chan-Rodriguez D; Walker EL Front Plant Sci; 2018; 9():157. PubMed ID: 29515599 [TBL] [Abstract][Full Text] [Related]
8. ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. Schaaf G; Ludewig U; Erenoglu BE; Mori S; Kitahara T; von Wirén N J Biol Chem; 2004 Mar; 279(10):9091-6. PubMed ID: 14699112 [TBL] [Abstract][Full Text] [Related]
9. Iron Inefficiency in Maize Mutant ys1 (Zea mays L. cv Yellow-Stripe) Is Caused by a Defect in Uptake of Iron Phytosiderophores. Von Wiren N; Mori S; Marschner H; Romheld V Plant Physiol; 1994 Sep; 106(1):71-77. PubMed ID: 12232304 [TBL] [Abstract][Full Text] [Related]
10. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. Nozoye T; Nagasaka S; Kobayashi T; Takahashi M; Sato Y; Sato Y; Uozumi N; Nakanishi H; Nishizawa NK J Biol Chem; 2011 Feb; 286(7):5446-54. PubMed ID: 21156806 [TBL] [Abstract][Full Text] [Related]
11. A putative function for the arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Schaaf G; Schikora A; Häberle J; Vert G; Ludewig U; Briat JF; Curie C; von Wirén N Plant Cell Physiol; 2005 May; 46(5):762-74. PubMed ID: 15753101 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide analysis of the NAAT, DMAS, TOM, and ENA gene families in maize suggests their roles in mediating iron homeostasis. Zhang X; Xiao K; Li S; Li J; Huang J; Chen R; Pang S; Zhou X BMC Plant Biol; 2022 Jan; 22(1):37. PubMed ID: 35039017 [TBL] [Abstract][Full Text] [Related]
13. Brachypodium distachyon as a new model system for understanding iron homeostasis in grasses: phylogenetic and expression analysis of Yellow Stripe-Like (YSL) transporters. Yordem BK; Conte SS; Ma JF; Yokosho K; Vasques KA; Gopalsamy SN; Walker EL Ann Bot; 2011 Oct; 108(5):821-33. PubMed ID: 21831857 [TBL] [Abstract][Full Text] [Related]
14. Iron acquisition by phytosiderophores contributes to cadmium tolerance. Meda AR; Scheuermann EB; Prechsl UE; Erenoglu B; Schaaf G; Hayen H; Weber G; von Wirén N Plant Physiol; 2007 Apr; 143(4):1761-73. PubMed ID: 17337530 [TBL] [Abstract][Full Text] [Related]
15. The helical propensity of the extracellular loop is responsible for the substrate specificity of Fe(III)-phytosiderophore transporters. Harada E; Sugase K; Namba K; Murata Y FEBS Lett; 2016 Dec; 590(24):4617-4627. PubMed ID: 27861811 [TBL] [Abstract][Full Text] [Related]
16. Uptake mechanism of iron-phytosiderophore from the soil based on the structure of yellow stripe transporter. Yamagata A; Murata Y; Namba K; Terada T; Fukai S; Shirouzu M Nat Commun; 2022 Nov; 13(1):7180. PubMed ID: 36424382 [TBL] [Abstract][Full Text] [Related]
17. Roots of Iron-Efficient Maize also Absorb Phytosiderophore-Chelated Zinc. Von Wiren N; Marschner H; Romheld V Plant Physiol; 1996 Aug; 111(4):1119-1125. PubMed ID: 12226351 [TBL] [Abstract][Full Text] [Related]
18. Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Waters BM; Chu HH; Didonato RJ; Roberts LA; Eisley RB; Lahner B; Salt DE; Walker EL Plant Physiol; 2006 Aug; 141(4):1446-58. PubMed ID: 16815956 [TBL] [Abstract][Full Text] [Related]
19. Mediation of Zinc and Iron Accumulation in Maize by ZmIRT2, a Novel Iron-Regulated Transporter. Li S; Song Z; Liu X; Zhou X; Yang W; Chen J; Chen R Plant Cell Physiol; 2022 Apr; 63(4):521-534. PubMed ID: 35137187 [TBL] [Abstract][Full Text] [Related]
20. The Phytosiderophore Efflux Transporter TOM2 Is Involved in Metal Transport in Rice. Nozoye T; Nagasaka S; Kobayashi T; Sato Y; Uozumi N; Nakanishi H; Nishizawa NK J Biol Chem; 2015 Nov; 290(46):27688-99. PubMed ID: 26432636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]