BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 23667529)

  • 1. Monitoring of single-cell responses in the optic tectum of adult zebrafish with dextran-coupled calcium dyes delivered via local electroporation.
    Kassing V; Engelmann J; Kurtz R
    PLoS One; 2013; 8(5):e62846. PubMed ID: 23667529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuron types in the zebrafish optic tectum labeled by an id2b transgene.
    DeMarco E; Xu N; Baier H; Robles E
    J Comp Neurol; 2020 May; 528(7):1173-1188. PubMed ID: 31725916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinotectal circuitry of larval zebrafish is adapted to detection and pursuit of prey.
    Förster D; Helmbrecht TO; Mearns DS; Jordan L; Mokayes N; Baier H
    Elife; 2020 Oct; 9():. PubMed ID: 33044168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual Experience Facilitates BDNF-Dependent Adaptive Recruitment of New Neurons in the Postembryonic Optic Tectum.
    Hall ZJ; Tropepe V
    J Neurosci; 2018 Feb; 38(8):2000-2014. PubMed ID: 29363581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fourier Motion Processing in the Optic Tectum and Pretectum of the Zebrafish Larva.
    Duchemin A; Privat M; Sumbre G
    Front Neural Circuits; 2021; 15():814128. PubMed ID: 35069128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting the zebrafish optic tectum using in vivo electroporation.
    Hoegler KJ; Horne JH
    Cold Spring Harb Protoc; 2010 Jul; 2010(7):pdb.prot5463. PubMed ID: 20647367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Input from torus longitudinalis drives binocularity and spatial summation in zebrafish optic tectum.
    Tesmer AL; Fields NP; Robles E
    BMC Biol; 2022 Jan; 20(1):24. PubMed ID: 35073895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation-induced modification of motion selectivity tuning in visual tectal neurons of adult zebrafish.
    Hollmann V; Lucks V; Kurtz R; Engelmann J
    J Neurophysiol; 2015 Nov; 114(5):2893-902. PubMed ID: 26378206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse correlation of rapid calcium signals in the zebrafish optic tectum in vivo.
    Ramdya P; Reiter B; Engert F
    J Neurosci Methods; 2006 Oct; 157(2):230-7. PubMed ID: 16765450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective processing of all rotational and translational optic flow directions in the zebrafish pretectum and tectum.
    Wang K; Hinz J; Haikala V; Reiff DF; Arrenberg AB
    BMC Biol; 2019 Mar; 17(1):29. PubMed ID: 30925897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional imaging reveals rapid development of visual response properties in the zebrafish tectum.
    Niell CM; Smith SJ
    Neuron; 2005 Mar; 45(6):941-51. PubMed ID: 15797554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of neuronal and glial populations of the visual system during zebrafish lifespan.
    Arenzana FJ; Santos-Ledo A; Porteros A; Aijón J; Velasco A; Lara JM; Arévalo R
    Int J Dev Neurosci; 2011 Jun; 29(4):441-9. PubMed ID: 21392569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium signals monitored from leopard frog optic tectum after the optic nerve has been selectively loaded with calcium sensitive dye.
    Dudkin EA; Myers PZ; Ramirez-Latorre JA; Gruberg ER
    Neurosci Lett; 1998 Dec; 258(2):124-6. PubMed ID: 9875543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring tectal neuronal activities and motor behavior in zebrafish larvae.
    Sumbre G; Poo MM
    Cold Spring Harb Protoc; 2013 Sep; 2013(9):873-9. PubMed ID: 24003199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring.
    Santos RA; Fuertes AJC; Short G; Donohue KC; Shao H; Quintanilla J; Malakzadeh P; Cohen-Cory S
    Neural Dev; 2018 Sep; 13(1):22. PubMed ID: 30219101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging Neuronal Activity in the Optic Tectum of Late Stage Larval Zebrafish.
    Bergmann K; Meza Santoscoy P; Lygdas K; Nikolaeva Y; MacDonald RB; Cunliffe VT; Nikolaev A
    J Dev Biol; 2018 Mar; 6(1):. PubMed ID: 29615555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal analysis of electrically evoked activity in the chicken optic tectum: a VSDI study.
    Weigel S; Luksch H
    J Neurophysiol; 2012 Jan; 107(2):640-8. PubMed ID: 22031774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Layer-specific targeting of direction-selective neurons in the zebrafish optic tectum.
    Gabriel JP; Trivedi CA; Maurer CM; Ryu S; Bollmann JH
    Neuron; 2012 Dec; 76(6):1147-60. PubMed ID: 23259950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Principles of Functional Circuit Connectivity: Insights From Spontaneous Activity in the Zebrafish Optic Tectum.
    Marachlian E; Avitan L; Goodhill GJ; Sumbre G
    Front Neural Circuits; 2018; 12():46. PubMed ID: 29977193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bulk Dye Loading for In Vivo Calcium Imaging of Visual Responses in Populations of
    Hogg PW; Haas K
    Cold Spring Harb Protoc; 2022 Jan; 2022(1):. PubMed ID: 33782097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.