These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 23667553)

  • 21. DrugE-Rank: improving drug-target interaction prediction of new candidate drugs or targets by ensemble learning to rank.
    Yuan Q; Gao J; Wu D; Zhang S; Mamitsuka H; Zhu S
    Bioinformatics; 2016 Jun; 32(12):i18-i27. PubMed ID: 27307615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SELF-BLM: Prediction of drug-target interactions via self-training SVM.
    Keum J; Nam H
    PLoS One; 2017; 12(2):e0171839. PubMed ID: 28192537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting drug-target interactions using restricted Boltzmann machines.
    Wang Y; Zeng J
    Bioinformatics; 2013 Jul; 29(13):i126-34. PubMed ID: 23812976
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drug-target interaction prediction by learning from local information and neighbors.
    Mei JP; Kwoh CK; Yang P; Li XL; Zheng J
    Bioinformatics; 2013 Jan; 29(2):238-45. PubMed ID: 23162055
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information.
    Luo Y; Zhao X; Zhou J; Yang J; Zhang Y; Kuang W; Peng J; Chen L; Zeng J
    Nat Commun; 2017 Sep; 8(1):573. PubMed ID: 28924171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of Drug-Target Interactions Based on Network Representation Learning and Ensemble Learning.
    Xuan P; Chen B; Zhang T; Yang Y
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2671-2681. PubMed ID: 32340959
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using feature selection technique for drug-target interaction networks prediction.
    Yu W; Jiang Z; Wang J; Tao R
    Curr Med Chem; 2011; 18(36):5687-93. PubMed ID: 22172073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models.
    Caragea C; Caragea D; Silvescu A; Honavar V
    BMC Bioinformatics; 2010 Oct; 11 Suppl 8(Suppl 8):S6. PubMed ID: 21034431
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational Prediction of Drug-Target Interactions via Ensemble Learning.
    Ezzat A; Wu M; Li X; Kwoh CK
    Methods Mol Biol; 2019; 1903():239-254. PubMed ID: 30547446
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PepDist: a new framework for protein-peptide binding prediction based on learning peptide distance functions.
    Hertz T; Yanover C
    BMC Bioinformatics; 2006 Mar; 7 Suppl 1(Suppl 1):S3. PubMed ID: 16723006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Link Prediction Only With Interaction Data and its Application on Drug Repositioning.
    Liu J; Zuo Z; Wu G
    IEEE Trans Nanobioscience; 2020 Jul; 19(3):547-555. PubMed ID: 32340956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces.
    Yamanishi Y; Araki M; Gutteridge A; Honda W; Kanehisa M
    Bioinformatics; 2008 Jul; 24(13):i232-40. PubMed ID: 18586719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Convolutional Neural Network System to Discriminate Drug-Target Interactions.
    Hu S; Xia D; Su B; Chen P; Wang B; Li J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1315-1324. PubMed ID: 31514149
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Drug-target interaction prediction: databases, web servers and computational models.
    Chen X; Yan CC; Zhang X; Zhang X; Dai F; Yin J; Zhang Y
    Brief Bioinform; 2016 Jul; 17(4):696-712. PubMed ID: 26283676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigating drug-target association and dissociation mechanisms using metadynamics-based algorithms.
    Cavalli A; Spitaleri A; Saladino G; Gervasio FL
    Acc Chem Res; 2015 Feb; 48(2):277-85. PubMed ID: 25496113
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Network-based characterization of drug-protein interaction signatures with a space-efficient approach.
    Tabei Y; Kotera M; Sawada R; Yamanishi Y
    BMC Syst Biol; 2019 Apr; 13(Suppl 2):39. PubMed ID: 30953486
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PreDTIs: prediction of drug-target interactions based on multiple feature information using gradient boosting framework with data balancing and feature selection techniques.
    Mahmud SMH; Chen W; Liu Y; Awal MA; Ahmed K; Rahman MH; Moni MA
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33709119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting Drug-Target Interactions with Deep-Embedding Learning of Graphs and Sequences.
    Chen W; Chen G; Zhao L; Chen CY
    J Phys Chem A; 2021 Jul; 125(25):5633-5642. PubMed ID: 34142824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Drug repositioning via matrix completion with multi-view side information.
    Hao Y; Cai M; Li L
    IET Syst Biol; 2019 Oct; 13(5):267-275. PubMed ID: 31538961
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GANsDTA: Predicting Drug-Target Binding Affinity Using GANs.
    Zhao L; Wang J; Pang L; Liu Y; Zhang J
    Front Genet; 2019; 10():1243. PubMed ID: 31993067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.