BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23667749)

  • 1. Experimental and Automated Analysis Techniques for High-resolution Electrical Mapping of Small Intestine Slow Wave Activity.
    Angeli TR; O'Grady G; Paskaranandavadivel N; Erickson JC; Du P; Pullan AJ; Bissett IP; Cheng LK
    J Neurogastroenterol Motil; 2013 Apr; 19(2):179-91. PubMed ID: 23667749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intra-operative high-resolution mapping of slow wave propagation in the human jejunum: Feasibility and initial results.
    Angeli TR; O'Grady G; Vather R; Bissett IP; Cheng LK
    Neurogastroenterol Motil; 2018 Jul; 30(7):e13310. PubMed ID: 29493080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic slow-wave interactions in the rabbit small intestine defined using high-resolution mapping.
    Cherian Abraham A; Cheng LK; Angeli TR; Alighaleh S; Paskaranandavadivel N
    Neurogastroenterol Motil; 2019 Sep; 31(9):e13670. PubMed ID: 31250520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping small intestine bioelectrical activity using high-resolution printed-circuit-board electrodes.
    Angeli TR; O'Grady G; Erickson JC; Du P; Paskaranandavadivel N; Bissett IP; Cheng LK; Pullan AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4951-4. PubMed ID: 22255449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circumferential and functional re-entry of in vivo slow-wave activity in the porcine small intestine.
    Angeli TR; O'Grady G; Du P; Paskaranandavadivel N; Pullan AJ; Bissett IP; Cheng LK
    Neurogastroenterol Motil; 2013 May; 25(5):e304-14. PubMed ID: 23489929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Falling-edge, variable threshold (FEVT) method for the automated detection of gastric slow wave events in high-resolution serosal electrode recordings.
    Erickson JC; O'Grady G; Du P; Obioha C; Qiao W; Richards WO; Bradshaw LA; Pullan AJ; Cheng LK
    Ann Biomed Eng; 2010 Apr; 38(4):1511-29. PubMed ID: 20024624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution electrical mapping of porcine gastric slow-wave propagation from the mucosal surface.
    Angeli TR; Du P; Paskaranandavadivel N; Sathar S; Hall A; Asirvatham SJ; Farrugia G; Windsor JA; Cheng LK; O'Grady G
    Neurogastroenterol Motil; 2017 May; 29(5):. PubMed ID: 28035728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship Between Intestinal Slow-waves, Spike-bursts, and Motility, as Defined Through High-resolution Electrical and Video Mapping.
    Kuruppu S; Cheng LK; Avci R; Angeli-Gordon TR; Paskaranandavadivel N
    J Neurogastroenterol Motil; 2022 Oct; 28(4):664-677. PubMed ID: 36250373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping.
    Egbuji JU; O'Grady G; Du P; Cheng LK; Lammers WJ; Windsor JA; Pullan AJ
    Neurogastroenterol Motil; 2010 Oct; 22(10):e292-300. PubMed ID: 20618830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Spatially-dense Microfabricated Photolithographic Electrode Array for Gastrointestinal Slow Wave Recordings
    Nagahawatte ND; Paskaranandavadivel N; Angeli TR; Cheng LK; Avci R
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3957-3960. PubMed ID: 33018866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Monophasic Slow-wave Activation Phase Using Wavelet Decomposition.
    Han H; Cheng LK; Angeli TR; Paskaranandavadivel N
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():7157-7160. PubMed ID: 31947485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement and Analysis of In Vivo Gastroduodenal Slow Wave Patterns Using Anatomically-Specific Cradles and Electrodes.
    Simmonds S; Cheng LK; Ruha WW; Taberner AJ; Du P; Angeli-Gordon TR
    IEEE Trans Biomed Eng; 2024 Apr; 71(4):1289-1297. PubMed ID: 37971910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial response of jejunal pacing defined by a novel high-resolution multielectrode array.
    Nagahawatte ND; Avci R; Paskaranandavadivel N; Angeli-Gordon TR; Cheng LK
    Am J Physiol Gastrointest Liver Physiol; 2023 May; 324(5):G329-G340. PubMed ID: 36809176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Electrode Diameter and Contact Material on Signal Morphology of Gastric Bioelectrical Slow Wave Recordings.
    Kamat AA; Paskaranandavadivel N; Alighaleh S; Cheng LK; Angeli TR
    Ann Biomed Eng; 2020 Apr; 48(4):1407-1418. PubMed ID: 31980997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation.
    Du P; O'Grady G; Egbuji JU; Lammers WJ; Budgett D; Nielsen P; Windsor JA; Pullan AJ; Cheng LK
    Ann Biomed Eng; 2009 Apr; 37(4):839-46. PubMed ID: 19224368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling slow wave activity in the small intestine.
    Lin AS; Buist ML; Smith NP; Pullan AJ
    J Theor Biol; 2006 Sep; 242(2):356-62. PubMed ID: 16626759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping.
    O'Grady G; Du P; Cheng LK; Egbuji JU; Lammers WJ; Windsor JA; Pullan AJ
    Am J Physiol Gastrointest Liver Physiol; 2010 Sep; 299(3):G585-92. PubMed ID: 20595620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterns of Abnormal Gastric Pacemaking After Sleeve Gastrectomy Defined by Laparoscopic High-Resolution Electrical Mapping.
    Berry R; Cheng LK; Du P; Paskaranandavadivel N; Angeli TR; Mayne T; Beban G; O'Grady G
    Obes Surg; 2017 Aug; 27(8):1929-1937. PubMed ID: 28213666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated detection of gastric slow wave events and estimation of propagation velocity vector fields from serosal high-resolution mapping.
    Du P; Qiao W; O'Grady G; Egbuji JU; Lammers W; Cheng LK; Pullan AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2527-30. PubMed ID: 19964973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Slow Wave Activity in Ex-vivo Porcine Small Intestine Segments.
    Nagahawatte ND; Paskaranandavadivel N; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7296-7299. PubMed ID: 34892783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.