These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 23668033)

  • 1. [In-vitro electrochemical stability evaluation of a flexible MEMS microelectrode].
    Wang Y; Sui X; Feng G; Li G; Chai X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2013 Jan; 37(1):6-9. PubMed ID: 23668033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulus induced pH changes in retinal implants.
    Chu AP; Morris K; Greenberg RJ; Zhou DM
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4160-2. PubMed ID: 17271218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical characteristics of microelectrode designed for electrical stimulation.
    Cui H; Xie X; Xu S; Chan LLH; Hu Y
    Biomed Eng Online; 2019 Aug; 18(1):86. PubMed ID: 31370902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of scanning electrochemical potential on the short-term impedance of commercially pure titanium in simulated biological conditions.
    Ehrensberger MT; Gilbert JL
    J Biomed Mater Res A; 2010 Sep; 94(3):781-9. PubMed ID: 20336755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers.
    Lee SW; Seo JM; Ha S; Kim ET; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5859-66. PubMed ID: 19553608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extending the understanding of Shannon's safe stimulation limit for platinum electrodes: biphasic charge-balanced pulse trains in unbuffered saline at pH = 1 to pH = 12.
    Niederhoffer T; Vanhoestenberghe A; Lancashire HT
    J Neural Eng; 2024 Sep; 21(5):. PubMed ID: 38579740
    [No Abstract]   [Full Text] [Related]  

  • 7. Stimulus induced pH changes in cochlear implants: an in vitro and in vivo study.
    Huang CQ; Carter PM; Shepherd RK
    Ann Biomed Eng; 2001 Sep; 29(9):791-802. PubMed ID: 11599587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coulometric detection of irreversible electrochemical reactions occurring at Pt microelectrodes used for neural stimulation.
    Musa S; Rand DR; Bartic C; Eberle W; Nuttin B; Borghs G
    Anal Chem; 2011 Jun; 83(11):4012-22. PubMed ID: 21545093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parylene-based implantable platinum-black coated wire microelectrode for orbicularis oculi muscle electrical stimulation.
    Rui YF; Liu JQ; Yang B; Li KY; Yang CS
    Biomed Microdevices; 2012 Apr; 14(2):367-73. PubMed ID: 22124887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic neural stimulation with thin-film, iridium oxide electrodes.
    Weiland JD; Anderson DJ
    IEEE Trans Biomed Eng; 2000 Jul; 47(7):911-8. PubMed ID: 10916262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monophasic but not biphasic pulses induce brain tissue damage during monopolar high-frequency deep brain stimulation.
    Piallat B; Chabardès S; Devergnas A; Torres N; Allain M; Barrat E; Benabid AL
    Neurosurgery; 2009 Jan; 64(1):156-62; discussion 162-3. PubMed ID: 19145164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrosion behavior of titanium in the presence of calcium phosphate and serum proteins.
    Cheng X; Roscoe SG
    Biomaterials; 2005 Dec; 26(35):7350-6. PubMed ID: 16023203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in vitro model for investigating impedance changes with cell growth and electrical stimulation: implications for cochlear implants.
    Newbold C; Richardson R; Huang CQ; Milojevic D; Cowan R; Shepherd R
    J Neural Eng; 2004 Dec; 1(4):218-27. PubMed ID: 15876642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A time-based potential step analysis of electrochemical impedance incorporating a constant phase element: a study of commercially pure titanium in phosphate buffered saline.
    Ehrensberger MT; Gilbert JL
    J Biomed Mater Res A; 2010 May; 93(2):576-84. PubMed ID: 19591235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo electrical stimulation of rabbit retina with a microfabricated array: strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility.
    Rizzo JF; Goldbaum S; Shahin M; Denison TJ; Wyatt J
    Restor Neurol Neurosci; 2004; 22(6):429-43. PubMed ID: 15798362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bottom-up SiO2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems.
    Musa S; Rand DR; Cott DJ; Loo J; Bartic C; Eberle W; Nuttin B; Borghs G
    ACS Nano; 2012 Jun; 6(6):4615-28. PubMed ID: 22551016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optoelectronic retinal prosthesis: system design and performance.
    Loudin JD; Simanovskii DM; Vijayraghavan K; Sramek CK; Butterwick AF; Huie P; McLean GY; Palanker DV
    J Neural Eng; 2007 Mar; 4(1):S72-84. PubMed ID: 17325419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold nanograin microelectrodes for neuroelectronic interfaces.
    Kim R; Hong N; Nam Y
    Biotechnol J; 2013 Feb; 8(2):206-14. PubMed ID: 23071004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of microelectrode array (MEA) based on silicone-polyimide hybrid for retina prosthesis.
    Kim ET; Kim C; Lee SW; Seo JM; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Sep; 50(9):4337-41. PubMed ID: 19264890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-property relationships in the optimization of polysilicon thin films for electrical recording/stimulation of single neurons.
    Saha R; Muthuswamy J
    Biomed Microdevices; 2007 Jun; 9(3):345-60. PubMed ID: 17203379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.