These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23668264)

  • 1. Detecting fixation on a target using time-frequency distributions of a retinal birefringence scanning signal.
    Gramatikov B
    Biomed Eng Online; 2013 May; 12():41. PubMed ID: 23668264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of central fixation using short-time autoregressive spectral estimation during retinal birefringence scanning.
    Gramatikov BI
    Med Eng Phys; 2015 Sep; 37(9):905-10. PubMed ID: 26213271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting central fixation by means of artificial neural networks in a pediatric vision screener using retinal birefringence scanning.
    Gramatikov BI
    Biomed Eng Online; 2017 Apr; 16(1):52. PubMed ID: 28449714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved eye-fixation detection using polarization-modulated retinal birefringence scanning, immune to corneal birefringence.
    Irsch K; Gramatikov BI; Wu YK; Guyton DL
    Opt Express; 2014 Apr; 22(7):7972-88. PubMed ID: 24718173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New pediatric vision screener employing polarization-modulated, retinal-birefringence-scanning-based strabismus detection and bull's eye focus detection with an improved target system: opto-mechanical design and operation.
    Irsch K; Gramatikov BI; Wu YK; Guyton DL
    J Biomed Opt; 2014 Jun; 19(6):067004. PubMed ID: 24911020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A device for continuous monitoring of true central fixation based on foveal birefringence.
    Gramatikov B; Irsch K; Müllenbroich M; Frindt N; Qu Y; Gutmark R; Wu YK; Guyton D
    Ann Biomed Eng; 2013 Sep; 41(9):1968-78. PubMed ID: 23645511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-aided fixation detection using retinal birefringence in multi-modal ophthalmic systems: Computer, electronics, algorithms.
    Gramatikov BI
    Comput Biol Med; 2020 Apr; 119():103672. PubMed ID: 32339117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directional eye fixation sensor using birefringence-based foveal detection.
    Gramatikov BI; Zalloum OH; Wu YK; Hunter DG; Guyton DL
    Appl Opt; 2007 Apr; 46(10):1809-18. PubMed ID: 17356625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New pediatric vision screener, part II: electronics, software, signal processing and validation.
    Gramatikov BI; Irsch K; Wu YK; Guyton DL
    Biomed Eng Online; 2016 Feb; 15():15. PubMed ID: 26847626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical modeling of retinal birefringence scanning.
    Hunter DG; Sandruck JC; Sau S; Patel SN; Guyton DL
    J Opt Soc Am A Opt Image Sci Vis; 1999 Sep; 16(9):2103-11. PubMed ID: 10474891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Use of Continuous Wavelet Transform Based on the Fast Fourier Transform in the Analysis of Multi-channel Electrogastrography Recordings.
    Komorowski D; Pietraszek S
    J Med Syst; 2016 Jan; 40(1):10. PubMed ID: 26573647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A no-moving-parts sensor for the detection of eye fixation using polarised light and retinal birefringence information.
    Gramatikov BI; Guyton DL
    J Med Eng Technol; 2017 May; 41(4):249-256. PubMed ID: 28122478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinal location of the preferred retinal locus relative to the fovea in scanning laser ophthalmoscope images.
    Timberlake GT; Sharma MK; Grose SA; Gobert DV; Gauch JM; Maino JH
    Optom Vis Sci; 2005 Mar; 82(3):177-85. PubMed ID: 15767869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The accuracy of fixation in lateral gaze and the problem of retinal slip.
    Crone RA
    Doc Ophthalmol; 1984 Aug; 58(1):65-9. PubMed ID: 6489109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Birefringence-based eye fixation monitor with no moving parts.
    Gramatikov BI; Zalloum OH; Wu YK; Hunter DG; Guyton DL
    J Biomed Opt; 2006; 11(3):34025. PubMed ID: 16822074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of eccentric fixation with secondary visual feedback.
    Zeevi YY; Peli E; Stark L
    J Opt Soc Am; 1979 May; 69(5):669-75. PubMed ID: 479971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal location and visual localization during pursuit eye movement.
    Mitrani L; Dimitrov G
    Vision Res; 1982; 22(8):1047-51. PubMed ID: 7135841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human fixation and pursuit in normal and open-loop conditions: effects of central and peripheral retinal targets.
    Collewijn H; Tamminga EP
    J Physiol; 1986 Oct; 379():109-29. PubMed ID: 3559990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induced visual motion: effects of fixation and retinal position.
    Humber CN; Sherrick MF
    Percept Mot Skills; 1993 Feb; 76(1):19-27. PubMed ID: 8451127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic field coil measurements of the accuracy of extreme gaze ocular fixation.
    Brunstetter TJ; Mitchell GL; Fogt N
    Optom Vis Sci; 2004 Aug; 81(8):606-15. PubMed ID: 15300120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.