BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23668313)

  • 1. Repigmentation of cutaneous scars depends on original wound type.
    Chadwick SL; Yip C; Ferguson MW; Shah M
    J Anat; 2013 Jul; 223(1):74-82. PubMed ID: 23668313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scar formation following excisional and burn injuries in a red Duroc pig model.
    Blackstone BN; Kim JY; McFarland KL; Sen CK; Supp DM; Bailey JK; Powell HM
    Wound Repair Regen; 2017 Aug; 25(4):618-631. PubMed ID: 28727221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autologous adipose-derived regenerative cell therapy modulates development of hypertrophic scarring in a red Duroc porcine model.
    Foubert P; Zafra D; Liu M; Rajoria R; Gutierrez D; Tenenhaus M; Fraser JK
    Stem Cell Res Ther; 2017 Nov; 8(1):261. PubMed ID: 29141687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partial thickness wound: Does mechanism of injury influence healing?
    Jabeen S; Clough ECS; Thomlinson AM; Chadwick SL; Ferguson MWJ; Shah M
    Burns; 2019 May; 45(3):531-542. PubMed ID: 30739729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Local Inflammation and Hypoxia in the Formation of Hypertrophic Scars-A New Model in the Duroc Pig.
    Nischwitz SP; Fink J; Schellnegger M; Luze H; Bubalo V; Tetyczka C; Roblegg E; Holecek C; Zacharias M; Kamolz LP; Kotzbeck P
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wound healing differences between Yorkshire and red Duroc porcine medial collateral ligaments identified by biomechanical assessment of scars.
    Germscheid NM; Thornton GM; Hart DA; Hildebrand KA
    Clin Biomech (Bristol, Avon); 2012 Jan; 27(1):91-8. PubMed ID: 21794964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multimodal assessment of melanin and melanocyte activity in abnormally pigmented hypertrophic scar.
    Travis TE; Ghassemi P; Ramella-Roman JC; Prindeze NJ; Paul DW; Moffatt LT; Jordan MH; Shupp JW
    J Burn Care Res; 2015; 36(1):77-86. PubMed ID: 25162947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractional CO
    Baumann ME; Blackstone BN; Malara MM; Clairmonte IA; Supp DM; Bailey JK; Powell HM
    Burns; 2020 Jun; 46(4):937-948. PubMed ID: 31767253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repigmentation after burn injury in the guinea-pig.
    Sowemimo GO; Naim J; Harrison HN; Lee JC
    Burns Incl Therm Inj; 1982 May; 8(5):345-57. PubMed ID: 7093800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confocal microscopic analysis of scarless repair in the fetal rat: defining the transition.
    Beanes SR; Hu FY; Soo C; Dang CM; Urata M; Ting K; Atkinson JB; Benhaim P; Hedrick MH; Lorenz HP
    Plast Reconstr Surg; 2002 Jan; 109(1):160-70. PubMed ID: 11786808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Race Does Not Predict Melanocyte Heterogeneous Responses to Dermal Fibroblast-Derived Mediators.
    Sirimahachaiyakul P; Sood RF; Muffley LA; Seaton M; Lin CT; Qiao L; Armaly JS; Hocking AM; Gibran NS
    PLoS One; 2015; 10(9):e0139135. PubMed ID: 26418010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hairless descendants of Mexican hairless dogs: an experimental model for studying hypertrophic scars.
    Kimura T
    J Cutan Med Surg; 2011; 15(6):329-39. PubMed ID: 22202508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abnormal pigmentation within cutaneous scars: A complication of wound healing.
    Chadwick S; Heath R; Shah M
    Indian J Plast Surg; 2012 May; 45(2):403-11. PubMed ID: 23162241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a porcine incisional wound model and novel scarring scales.
    Singer AJ; McClain SA
    Wound Repair Regen; 2006; 14(4):492-7. PubMed ID: 16939579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissecting Wnt Signaling for Melanocyte Regulation during Wound Healing.
    Sun Q; Rabbani P; Takeo M; Lee SH; Lim CH; Noel ES; Taketo MM; Myung P; Millar S; Ito M
    J Invest Dermatol; 2018 Jul; 138(7):1591-1600. PubMed ID: 29428355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skin wound healing in the first generation (F1) offspring of Yorkshire and red Duroc pigs: evidence for genetic inheritance of wound phenotype.
    Gallant-Behm CL; Tsao H; Reno C; Olson ME; Hart DA
    Burns; 2006 Mar; 32(2):180-93. PubMed ID: 16448761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why are scars pale? An immunohistochemical study indicating preservation of melanocyte number and function in surgical scars.
    Velangi SS; Rees JL
    Acta Derm Venereol; 2001; 81(5):326-8. PubMed ID: 11800137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyaluronan receptor expression increases in fetal excisional skin wounds and correlates with fibroplasia.
    Lovvorn HN; Cass DL; Sylvester KG; Yang EY; Crombleholme TM; Adzick NS; Savani RC
    J Pediatr Surg; 1998 Jul; 33(7):1062-9; discussion 1069-70. PubMed ID: 9694095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scarless healing of oral mucosa is characterized by faster resolution of inflammation and control of myofibroblast action compared to skin wounds in the red Duroc pig model.
    Mak K; Manji A; Gallant-Behm C; Wiebe C; Hart DA; Larjava H; Häkkinen L
    J Dermatol Sci; 2009 Dec; 56(3):168-80. PubMed ID: 19854029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wound healing in oral mucosa results in reduced scar formation as compared with skin: evidence from the red Duroc pig model and humans.
    Wong JW; Gallant-Behm C; Wiebe C; Mak K; Hart DA; Larjava H; Häkkinen L
    Wound Repair Regen; 2009; 17(5):717-29. PubMed ID: 19769724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.