BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23668325)

  • 1. Demonstration of HNE-related aldehyde formation via lipoxygenase-catalyzed synthesis of a bis-allylic dihydroperoxide intermediate.
    Jin J; Zheng Y; Brash AR
    Chem Res Toxicol; 2013 Jun; 26(6):896-903. PubMed ID: 23668325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two distinct pathways of formation of 4-hydroxynonenal. Mechanisms of nonenzymatic transformation of the 9- and 13-hydroperoxides of linoleic acid to 4-hydroxyalkenals.
    Schneider C; Tallman KA; Porter NA; Brash AR
    J Biol Chem; 2001 Jun; 276(24):20831-8. PubMed ID: 11259420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of Bis-Allylic Hydroperoxide Synthesis in the Iron-Containing Lipoxygenase 2 from Cyanothece and the Effects of Manganese Substitution.
    Newie J; Kasanmascheff M; Bennati M; Feussner I
    Lipids; 2016 Mar; 51(3):335-47. PubMed ID: 26832735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipoxygenase-catalyzed transformation of epoxy fatty acids to hydroxy-endoperoxides: a potential P450 and lipoxygenase interaction.
    Teder T; Boeglin WE; Brash AR
    J Lipid Res; 2014 Dec; 55(12):2587-96. PubMed ID: 25293588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygenation of (3Z)-nonenal to (2E)-4-hydroxy-2-nonenal in the broad bean (Vicia faba L.).
    Gardner HW; Hamberg M
    J Biol Chem; 1993 Apr; 268(10):6971-7. PubMed ID: 8463229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of 4-hydroxy-2(E)-nonenal on soybean lipoxygenase-1.
    Gardner HW; Deighton N
    Lipids; 2001 Jun; 36(6):623-8. PubMed ID: 11485167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 8R-Lipoxygenase-catalyzed synthesis of a prominent cis-epoxyalcohol from dihomo-γ-linolenic acid: a distinctive transformation compared with S-lipoxygenases.
    Jin J; Boeglin WE; Cha JK; Brash AR
    J Lipid Res; 2012 Feb; 53(2):292-9. PubMed ID: 22158855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional insights into the reaction specificity of catalase-related hydroperoxide lyase: A shift from lyase activity to allene oxide synthase by site-directed mutagenesis.
    Teder T; Lõhelaid H; Samel N
    PLoS One; 2017; 12(9):e0185291. PubMed ID: 28953966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygenation of (3Z)-alkenals to 4-hydroxy-(2E)-alkenals in plant extracts: a nonenzymatic process.
    Noordermeer MA; Feussner I; Kolbe A; Veldink GA; Vliegenthart JF
    Biochem Biophys Res Commun; 2000 Oct; 277(1):112-6. PubMed ID: 11027649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalase-Related Allene Oxide Synthase, on a Biosynthetic Route to Fatty Acid Cyclopentenones: Expression and Assay of the Enzyme and Preparation of the 8R-HPETE Substrate.
    Brash AR
    Methods Enzymol; 2018; 605():51-68. PubMed ID: 29909837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid formation of 4-hydroxy-2-nonenal, malondialdehyde, and phosphatidylcholine aldehyde from phospholipid hydroperoxide by hemoproteins.
    Hayashi T; Uchida K; Takebe G; Takahashi K
    Free Radic Biol Med; 2004 Apr; 36(8):1025-33. PubMed ID: 15059643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convergence of the 5-LOX and COX-2 pathways: heme-catalyzed cleavage of the 5S-HETE-derived di-endoperoxide into aldehyde fragments.
    Griesser M; Boeglin WE; Suzuki T; Schneider C
    J Lipid Res; 2009 Dec; 50(12):2455-62. PubMed ID: 19553698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Catalase-related Hemoprotein in Coral Is Specialized for Synthesis of Short-chain Aldehydes: DISCOVERY OF P450-TYPE HYDROPEROXIDE LYASE ACTIVITY IN A CATALASE.
    Teder T; Lõhelaid H; Boeglin WE; Calcutt WM; Brash AR; Samel N
    J Biol Chem; 2015 Aug; 290(32):19823-32. PubMed ID: 26100625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allene oxide and aldehyde biosynthesis in starfish oocytes.
    Brash AR; Hughes MA; Hawkins DJ; Boeglin WE; Song WC; Meijer L
    J Biol Chem; 1991 Dec; 266(34):22926-31. PubMed ID: 1744085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 4-oxo-2(E)-nonenal-derived glutathione adduct from 15-lipoxygenase-1-mediated oxidation of cytosolic and esterified arachidonic acid.
    Zhu P; Jian W; Blair IA
    Free Radic Biol Med; 2009 Oct; 47(7):953-61. PubMed ID: 19576981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positional specificity of a Lupinus albus lipoxygenase in relation to enzyme concentration and effect of a double dioxygenation product of arachidonic acid.
    Andrianarison RH; Tixier M; Beneytout JL
    Biochem Biophys Res Commun; 1990 Nov; 172(3):985-92. PubMed ID: 2123103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leukotriene formation by a purified reticulocyte lipoxygenase enzyme. Conversion of arachidonic acid and 15-hydroperoxyeicosatetraenoic acid to 14, 15-leukotriene A4.
    Bryant RW; Schewe T; Rapoport SM; Bailey JM
    J Biol Chem; 1985 Mar; 260(6):3548-55. PubMed ID: 2982864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of FeII-mediated decomposition of a linoleic acid-derived lipid hydroperoxide by liquid chromatography/mass spectrometry.
    Lee SH; Oe T; Arora JS; Blair IA
    J Mass Spectrom; 2005 May; 40(5):661-8. PubMed ID: 15739161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors influencing the rearrangement of bis-allylic hydroperoxides by manganese lipoxygenase.
    Oliw EH
    J Lipid Res; 2008 Feb; 49(2):420-8. PubMed ID: 18024999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Angiotensin II modification by decomposition products of linoleic acid-derived lipid hydroperoxide.
    Takahashi R; Goto T; Oe T; Lee SH
    Chem Biol Interact; 2015 Sep; 239():87-99. PubMed ID: 26111765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.