These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 23668620)

  • 1. Self-assembly of patterned nanoparticles on cellular membranes: effect of charge distribution.
    Li Y; Zhang X; Cao D
    J Phys Chem B; 2013 Jun; 117(22):6733-40. PubMed ID: 23668620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissipative particle dynamics simulations of polymer-protected nanoparticle self-assembly.
    Spaeth JR; Kevrekidis IG; Panagiotopoulos AZ
    J Chem Phys; 2011 Nov; 135(18):184903. PubMed ID: 22088077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable assembly of nanoparticles on patterned porous film.
    Ke BB; Wan LS; Chen PC; Zhang LY; Xu ZK
    Langmuir; 2010 Oct; 26(20):15982-8. PubMed ID: 20849141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study.
    Li Y; Gu N
    J Phys Chem B; 2010 Mar; 114(8):2749-54. PubMed ID: 20146444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of polytetrafluoroethylene nanoparticle films using repulsive electrostatic interactions.
    Du C; Wang J; Chen D
    Langmuir; 2014 Feb; 30(4):976-83. PubMed ID: 24409997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation of the spherical electrical double layer of a soft nanoparticle: effect of the surface charge and counterion valence.
    Nedyalkova M; Madurga S; Pisov S; Pastor I; Vilaseca E; Mas F
    J Chem Phys; 2012 Nov; 137(17):174701. PubMed ID: 23145736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of weak polyelectrolytes on charged nanoparticles. Impact of salt valency, pH, and nanoparticle charge density. Monte Carlo simulations.
    Carnal F; Stoll S
    J Phys Chem B; 2011 Oct; 115(42):12007-18. PubMed ID: 21902229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge-directed targeting of antimicrobial protein-nanoparticle conjugates.
    Satishkumar R; Vertegel A
    Biotechnol Bioeng; 2008 Jun; 100(3):403-12. PubMed ID: 18183633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the design of composite protein-quantum dot biomaterials via self-assembly.
    Majithia R; Patterson J; Bondos SE; Meissner KE
    Biomacromolecules; 2011 Oct; 12(10):3629-37. PubMed ID: 21892824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of heterogeneously charged nanoparticles on a variably charged surface by the extended surface complexation approach: charge regulation, chemical heterogeneity, and surface complexation.
    Saito T; Koopal LK; Nagasaki S; Tanaka S
    J Phys Chem B; 2008 Feb; 112(5):1339-49. PubMed ID: 18189380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-dimensional assemblies of charged nanoparticles in water: A simulation study.
    Richardi J
    J Chem Phys; 2009 Jan; 130(4):044701. PubMed ID: 19191398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer simulation of the role of protein corona in cellular delivery of nanoparticles.
    Ding HM; Ma YQ
    Biomaterials; 2014 Oct; 35(30):8703-10. PubMed ID: 25005681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization effects of dielectric nanoparticles in aqueous charge-asymmetric electrolytes.
    Guerrero García GI; Olvera de la Cruz M
    J Phys Chem B; 2014 Jul; 118(29):8854-62. PubMed ID: 24953671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface charge dependent nanoparticle disruption and deposition of lipid bilayer assemblies.
    Xiao X; Montaño GA; Edwards TL; Allen A; Achyuthan KE; Polsky R; Wheeler DR; Brozik SM
    Langmuir; 2012 Dec; 28(50):17396-403. PubMed ID: 23163515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembled PAA-based nanoparticles as potential gene and protein delivery systems.
    Griffiths PC; Mauro N; Murphy DM; Carter E; Richardson SC; Dyer P; Ferruti P
    Macromol Biosci; 2013 May; 13(5):641-9. PubMed ID: 23512337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Filtering of nanoparticles with tunable semiconductor membranes.
    Nadtochiy A; Melnikov D; Gracheva M
    ACS Nano; 2013 Aug; 7(8):7053-61. PubMed ID: 23879567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of nanoparticle charge and shape anisotropy on translocation through cell membranes.
    Nangia S; Sureshkumar R
    Langmuir; 2012 Dec; 28(51):17666-71. PubMed ID: 23088323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of colloidal nanoparticles inside charged droplets during spray-drying in the fabrication of nanostructured particles.
    Suhendi A; Nandiyanto AB; Munir MM; Ogi T; Gradon L; Okuyama K
    Langmuir; 2013 Oct; 29(43):13152-61. PubMed ID: 24138547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of the electrostatic forces involved in the directed assembly of colloidal nanoparticles by AFM nanoxerography.
    Palleau E; Sangeetha NM; Ressier L
    Nanotechnology; 2011 Aug; 22(32):325603. PubMed ID: 21772072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle translocation through a lipid bilayer tuned by surface chemistry.
    da Rocha EL; Caramori GF; Rambo CR
    Phys Chem Chem Phys; 2013 Feb; 15(7):2282-90. PubMed ID: 23223270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.