BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23668788)

  • 21. Omnipotent decoding potential resides in eukaryotic translation termination factor eRF1 of variant-code organisms and is modulated by the interactions of amino acid sequences within domain 1.
    Ito K; Frolova L; Seit-Nebi A; Karamyshev A; Kisselev L; Nakamura Y
    Proc Natl Acad Sci U S A; 2002 Jun; 99(13):8494-9. PubMed ID: 12084909
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [A new method to measure the functional activity of class-1 translation termination factor eRF1].
    Mazur AM; Kholod NS; Seit Nebi AS; Kiselev LL
    Mol Biol (Mosk); 2002; 36(1):129-35. PubMed ID: 11862703
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of eRF1 residues that play critical and complementary roles in stop codon recognition.
    Conard SE; Buckley J; Dang M; Bedwell GJ; Carter RL; Khass M; Bedwell DM
    RNA; 2012 Jun; 18(6):1210-21. PubMed ID: 22543865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinct eRF3 requirements suggest alternate eRF1 conformations mediate peptide release during eukaryotic translation termination.
    Fan-Minogue H; Du M; Pisarev AV; Kallmeyer AK; Salas-Marco J; Keeling KM; Thompson SR; Pestova TV; Bedwell DM
    Mol Cell; 2008 Jun; 30(5):599-609. PubMed ID: 18538658
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conversion of omnipotent translation termination factor eRF1 into ciliate-like UGA-only unipotent eRF1.
    Seit-Nebi A; Frolova L; Kisselev L
    EMBO Rep; 2002 Sep; 3(9):881-6. PubMed ID: 12189178
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ciliates use both variant and universal genetic codes: evidence of omnipotent eRF1s in the class Litostomatea.
    Kim OT; Sakurai A; Saito K; Ito K; Ikehara K; Harumoto T
    Gene; 2008 Jul; 417(1-2):51-8. PubMed ID: 18495382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic analysis of L123 of the tRNA-mimicking eukaryote release factor eRF1, an amino acid residue critical for discrimination of stop codons.
    Saito K; Ito K
    Nucleic Acids Res; 2015 May; 43(9):4591-601. PubMed ID: 25897120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decoding the decoding region: analysis of eukaryotic release factor (eRF1) stop codon-binding residues.
    Liang H; Wong JY; Bao Q; Cavalcanti AR; Landweber LF
    J Mol Evol; 2005 Mar; 60(3):337-44. PubMed ID: 15871044
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation and expression of two genes encoding eukaryotic release factor 1 from Paramecium tetraurelia.
    Kervestin S; Garnier OA; Karamyshev AL; Ito K; Nakamura Y; Meyer E; Jean-Jean O
    J Eukaryot Microbiol; 2002; 49(5):374-82. PubMed ID: 12425524
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Connection between stop codon reassignment and frequent use of shifty stop frameshifting.
    Vallabhaneni H; Fan-Minogue H; Bedwell DM; Farabaugh PJ
    RNA; 2009 May; 15(5):889-97. PubMed ID: 19329535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three distinct peptides from the N domain of translation termination factor eRF1 surround stop codon in the ribosome.
    Bulygin KN; Khairulina YS; Kolosov PM; Ven'yaminova AG; Graifer DM; Vorobjev YN; Frolova LY; Kisselev LL; Karpova GG
    RNA; 2010 Oct; 16(10):1902-14. PubMed ID: 20688868
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural basis for stop codon recognition in eukaryotes.
    Brown A; Shao S; Murray J; Hegde RS; Ramakrishnan V
    Nature; 2015 Aug; 524(7566):493-496. PubMed ID: 26245381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure-Based Energetics of Stop Codon Recognition by Eukaryotic Release Factor.
    Kumar A; Basu D; Satpati P
    J Chem Inf Model; 2017 Sep; 57(9):2321-2328. PubMed ID: 28825483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of two classes of release factors from Euplotes octocarinatus.
    Chai BF; Song L; Fu YJ; Wang W; Liang AH
    Yi Chuan Xue Bao; 2004 May; 31(5):460-7. PubMed ID: 15478605
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of the individual domains of translation termination factor eRF1 in GTP binding to eRF3.
    Kononenko AV; Mitkevich VA; Dubovaya VI; Kolosov PM; Makarov AA; Kisselev LL
    Proteins; 2008 Feb; 70(2):388-93. PubMed ID: 17680691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Molecular modeling of positioning of human release factor eRF1 relative to mRNA stop-codon explains a proximity of the eRF1 C-domain to stop-codon in ribosomal complex].
    Vorob'ev IuN; Kiselev LL
    Mol Biol (Mosk); 2008; 42(2):341-51. PubMed ID: 18610843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [C-domain of translation termination factor eRF1 neighbors stop codon at the 80S ribosomal A site].
    Bulygin KN; Popugaeva EA; Repkova MN; Meshchaninova MI; Ven'iaminova AG; Gaĭfer DM; Frolova LIu; Karpova GG
    Mol Biol (Mosk); 2007; 41(5):858-67. PubMed ID: 18240568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Characterization of missense mutations in the SUP45 gene of Saccharomyces cerevisiae encoding translation termination factor eRF1].
    Moskalenko SE; Zhuravleva GA; Soom MIa; Shabel'skaia SV; Volkov KV; Zemlianko OM; Philippe M; Mironova LN; Inge-Vechtomov SG
    Genetika; 2004 May; 40(5):599-606. PubMed ID: 15272556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly conserved NIKS tetrapeptide is functionally essential in eukaryotic translation termination factor eRF1.
    Frolova L; Seit-Nebi A; Kisselev L
    RNA; 2002 Feb; 8(2):129-36. PubMed ID: 11911360
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of a human translation termination complex.
    Matheisl S; Berninghausen O; Becker T; Beckmann R
    Nucleic Acids Res; 2015 Oct; 43(18):8615-26. PubMed ID: 26384426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.