These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23669533)

  • 1. The topographical N170: electrophysiological evidence of a neural mechanism for human spatial navigation.
    Baker TE; Holroyd CB
    Biol Psychol; 2013 Sep; 94(1):90-105. PubMed ID: 23669533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Which way do I go? Neural activation in response to feedback and spatial processing in a virtual T-maze.
    Baker TE; Holroyd CB
    Cereb Cortex; 2009 Aug; 19(8):1708-22. PubMed ID: 19073622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An electrophysiological correlate of conflict processing in an auditory spatial Stroop task: the effect of individual differences in navigational style.
    Buzzell GA; Roberts DM; Baldwin CL; McDonald CG
    Int J Psychophysiol; 2013 Nov; 90(2):265-71. PubMed ID: 23994425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rightward-biased hemodynamic response of the parahippocampal system during virtual navigation.
    Baker TE; Umemoto A; Krawitz A; Holroyd CB
    Sci Rep; 2015 Mar; 5():9063. PubMed ID: 25761577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Event-related delta and theta brain oscillations reflect age-related changes in both a general and a specific neuronal inhibitory mechanism.
    Schmiedt-Fehr C; Basar-Eroglu C
    Clin Neurophysiol; 2011 Jun; 122(6):1156-67. PubMed ID: 21115266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The functional role of human right hippocampal/parahippocampal theta rhythm in environmental encoding during virtual spatial navigation.
    Pu Y; Cornwell BR; Cheyne D; Johnson BW
    Hum Brain Mapp; 2017 Mar; 38(3):1347-1361. PubMed ID: 27813230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sex differences in human EEG theta oscillations during spatial navigation in virtual reality.
    Kober SE; Neuper C
    Int J Psychophysiol; 2011 Mar; 79(3):347-55. PubMed ID: 21146566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatio-temporal indications of sub-cortical involvement in leftward bias of spatial attention.
    Okon-Singer H; Podlipsky I; Siman-Tov T; Ben-Simon E; Zhdanov A; Neufeld MY; Hendler T
    Neuroimage; 2011 Feb; 54(4):3010-20. PubMed ID: 21056675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural foundations of emerging route knowledge in complex spatial environments.
    Wolbers T; Weiller C; Büchel C
    Brain Res Cogn Brain Res; 2004 Nov; 21(3):401-11. PubMed ID: 15511655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial navigation in virtual reality environments: an EEG analysis.
    Bischof WF; Boulanger P
    Cyberpsychol Behav; 2003 Oct; 6(5):487-95. PubMed ID: 14583124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intelligence and neural efficiency: further evidence of the influence of task content and sex on the brain-IQ relationship.
    Neubauer AC; Grabner RH; Fink A; Neuper C
    Brain Res Cogn Brain Res; 2005 Sep; 25(1):217-25. PubMed ID: 16026971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The orienting of visuospatial attention: an event-related brain potential study.
    Talsma D; Slagter HA; Nieuwenhuis S; Hage J; Kok A
    Brain Res Cogn Brain Res; 2005 Sep; 25(1):117-29. PubMed ID: 15925498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partially segregated neural networks for spatial and contextual memory in virtual navigation.
    Rauchs G; Orban P; Balteau E; Schmidt C; Degueldre C; Luxen A; Maquet P; Peigneux P
    Hippocampus; 2008; 18(5):503-18. PubMed ID: 18240326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain oscillatory activity during spatial navigation: theta and gamma activity link medial temporal and parietal regions.
    White DJ; Congedo M; Ciorciari J; Silberstein RB
    J Cogn Neurosci; 2012 Mar; 24(3):686-97. PubMed ID: 21812639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parametric study of EEG sensitivity to phase noise during face processing.
    Rousselet GA; Pernet CR; Bennett PJ; Sekuler AB
    BMC Neurosci; 2008 Oct; 9():98. PubMed ID: 18834518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution ERP mapping of cortical activation related to implicit object-location memory.
    Murphy JS; Wynne CE; O'Rourke EM; Commins S; Roche RA
    Biol Psychol; 2009 Dec; 82(3):234-45. PubMed ID: 19683556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is there "neural efficiency" during the processing of visuo-spatial information in male humans? An EEG study.
    Capotosto P; Perrucci MG; Brunetti M; Del Gratta C; Doppelmayr M; Grabner RH; Klimesch W; Neubauer A; Neuper C; Pfurtscheller G; Romani GL; Babiloni C
    Behav Brain Res; 2009 Dec; 205(2):468-74. PubMed ID: 19665491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-lasting effects of performance-contingent unconscious and conscious reward incentives during cued task-switching.
    Capa RL; Bouquet CA; Dreher JC; Dufour A
    Cortex; 2013; 49(7):1943-54. PubMed ID: 22770561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors affecting the hippocampal BOLD response during spatial memory.
    Shipman SL; Astur RS
    Behav Brain Res; 2008 Mar; 187(2):433-41. PubMed ID: 18055028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Simon effect in cognitive electrophysiology: A short review.
    Leuthold H
    Acta Psychol (Amst); 2011 Feb; 136(2):203-11. PubMed ID: 20828671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.